In this thesis, we explore the possibilities of Davis-Januszkiewicz (1991) techniques to build manifold covers of right-angled polytopes. Combining these techniques with Choi-Park (2017) work on the cohomology ring of real toric manifolds, and with computational algorithms in Sagemath, we classify up to isometry all possible cusp sections of finite-volume, orientable, hyperbolic 4-manifolds obtained as manifold covers of right-angled polytopes. We also obtain the first example of an orientable, cusped hyperbolic 4-manifold such that all cusp sections are rational homology spheres. This answers in particular to an open question from Golénia-Moroianu (2012) and provides a counter-example to Mazzeo-Phillips (1990).

Hyperbolic Manifolds and Coloured Polytopes

2021

Abstract

In this thesis, we explore the possibilities of Davis-Januszkiewicz (1991) techniques to build manifold covers of right-angled polytopes. Combining these techniques with Choi-Park (2017) work on the cohomology ring of real toric manifolds, and with computational algorithms in Sagemath, we classify up to isometry all possible cusp sections of finite-volume, orientable, hyperbolic 4-manifolds obtained as manifold covers of right-angled polytopes. We also obtain the first example of an orientable, cusped hyperbolic 4-manifold such that all cusp sections are rational homology spheres. This answers in particular to an open question from Golénia-Moroianu (2012) and provides a counter-example to Mazzeo-Phillips (1990).
27-lug-2021
Italiano
Martelli, Bruno
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
PhD_thesis.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 910.9 kB
Formato Adobe PDF
910.9 kB Adobe PDF Visualizza/Apri
Report_on_the_activities_during_PhD.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 54.2 kB
Formato Adobe PDF
54.2 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/143634
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-143634