What are the processes activated by light when it impinges on a sample of light- sensitive molecules in mutual interaction? How can this information be accessed from both the experimental and theoretical sides? This work is aimed at answering at these specific questions. In order to accomplish this goal, we use state-of-the-art computational methods and develop novel theoretical approaches for investigating static and dynamical properties of networks of interacting molecular organic chromophores, and compute their spectroscopy. We focus in particular on the simulation of non-linear time-resolved techniques, such as the pump-probe and the two dimensional electronic spectroscopy. These approaches have been proven to be fundamental tools to track the system photoinduced dynamics with extremely high time and spectral resolution and disentangle contributions from different system components. We conclude that the synergic combination of “independent” results from accurate quantum chemical calculations and detailed spectroscopic experiments is the way to reach a reliable map of the activated energy transfer processes and to gain new physical insights into the system properties.

Modeling Photoinduced Events and Non-linear Spectroscopy in Complex Multichromophoric Systems

2018

Abstract

What are the processes activated by light when it impinges on a sample of light- sensitive molecules in mutual interaction? How can this information be accessed from both the experimental and theoretical sides? This work is aimed at answering at these specific questions. In order to accomplish this goal, we use state-of-the-art computational methods and develop novel theoretical approaches for investigating static and dynamical properties of networks of interacting molecular organic chromophores, and compute their spectroscopy. We focus in particular on the simulation of non-linear time-resolved techniques, such as the pump-probe and the two dimensional electronic spectroscopy. These approaches have been proven to be fundamental tools to track the system photoinduced dynamics with extremely high time and spectral resolution and disentangle contributions from different system components. We conclude that the synergic combination of “independent” results from accurate quantum chemical calculations and detailed spectroscopic experiments is the way to reach a reliable map of the activated energy transfer processes and to gain new physical insights into the system properties.
17-apr-2018
Università degli Studi di Bologna
File in questo prodotto:
File Dimensione Formato  
Segatta_Francesco_tesi.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 62.71 MB
Formato Adobe PDF
62.71 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/144553
Il codice NBN di questa tesi è URN:NBN:IT:UNIBO-144553