This work proposes two methods to boost the performances of a given classifier: the first one, which works on a Neural Network classifier, is a new type of trainable activation function, that is a function which is adjusted during the learning phase, allowing the network to exploit the data better respect to use a classic activation function with fixed-shape; the second one provides two frameworks to use an external knowledge base to improve the classification results.

Improving classification models with context knowledge and variable activation functions

2018

Abstract

This work proposes two methods to boost the performances of a given classifier: the first one, which works on a Neural Network classifier, is a new type of trainable activation function, that is a function which is adjusted during the learning phase, allowing the network to exploit the data better respect to use a classic activation function with fixed-shape; the second one provides two frameworks to use an external knowledge base to improve the classification results.
10-dic-2018
Inglese
Università degli Studi di Napoli Federico II
File in questo prodotto:
File Dimensione Formato  
apicella_andrea_31.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/144776
Il codice NBN di questa tesi è URN:NBN:IT:UNINA-144776