The PhD thesis work deals with the exploration of hardware architectures dedicated to cryptographic applications, in particular, solutions based on reconfigurable hardware, such as FPGA. The thesis presents the results achieved for the acceleration of operations essential to homomorphic cryptography, specifically, the integer multiplication of very long operands, based on the Schonhage-Strassen algorithm and implemented with an ad-hoc FPGA hardware. Then, the thesis reports the exploration of novelty approaches for cryptographic acceleration, based on vectorial dedicated architectures, software programmable, with the corresponding implementation of symmetric and public key operations (namely, AES encryption and Montgomery multiplication) with improved performances.
Cryptographic extensions for custom and GPU-like architectures
2017
Abstract
The PhD thesis work deals with the exploration of hardware architectures dedicated to cryptographic applications, in particular, solutions based on reconfigurable hardware, such as FPGA. The thesis presents the results achieved for the acceleration of operations essential to homomorphic cryptography, specifically, the integer multiplication of very long operands, based on the Schonhage-Strassen algorithm and implemented with an ad-hoc FPGA hardware. Then, the thesis reports the exploration of novelty approaches for cryptographic acceleration, based on vectorial dedicated architectures, software programmable, with the corresponding implementation of symmetric and public key operations (namely, AES encryption and Montgomery multiplication) with improved performances.File | Dimensione | Formato | |
---|---|---|---|
thesis_book.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
680.62 kB
Formato
Adobe PDF
|
680.62 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/145124
URN:NBN:IT:UNINA-145124