This thesis proposes a the modelling and the analysis of Microgrids (MGs), togheter with a stochastic control strategy, namely the unsynchronized Addictive Increase Multiplicative Decrease (AIMD) algorithm, to manage the power flow of interconnected MGs. The proposed control aims at achieving an optimal trade-off between the individual utility function of each MG while ensuring the stability of the grid. Both centralized and decentralized AIMD approaches are considered and compared. Extensive Monte Carlo simulations are performed on the IEEE 39-bus system, and show that the proposed control strategy is able to provide the sought trade-off.

Analysis and Control of Multiple Microgrids

2018

Abstract

This thesis proposes a the modelling and the analysis of Microgrids (MGs), togheter with a stochastic control strategy, namely the unsynchronized Addictive Increase Multiplicative Decrease (AIMD) algorithm, to manage the power flow of interconnected MGs. The proposed control aims at achieving an optimal trade-off between the individual utility function of each MG while ensuring the stability of the grid. Both centralized and decentralized AIMD approaches are considered and compared. Extensive Monte Carlo simulations are performed on the IEEE 39-bus system, and show that the proposed control strategy is able to provide the sought trade-off.
8-feb-2018
Italiano
Raugi, Marco
Crisostomi, Emanuele
Milano, Federico
Tucci, Mauro
Landi, Alberto
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
PhDThesis.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 6.67 MB
Formato Adobe PDF
6.67 MB Adobe PDF Visualizza/Apri
report_fine_corso_Pietro_Ferraro_1.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 579.59 kB
Formato Adobe PDF
579.59 kB Adobe PDF Visualizza/Apri
Sintesi.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 32.92 kB
Formato Adobe PDF
32.92 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/145883
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-145883