Archives of Earth remote sensing data, acquired from orbiting satellites, contain large amounts of information that can be used both for research activities and decision support. Thematic categorization is one method to extract from satellite data meaningful information that humans can directly comprehend. An interactive system that permits to analyse geo-referenced thematic data and its evolution over time is proposed as a tool to efficiently exploit such vast and growing amount of data. This thesis describes the approach used in building the system, the data processing methodology, details architectural elements and graphical interfaces. Finally, this thesis provides an evaluation of potential uses of the features provided, performance levels and usability of an implementation hosting an archive of 15 years moderate resolution (1 Km, from the ATSR instrument) thematic data.

Multi-sensor Evolution Analysis: an advanced GIS for interactive time series analysis and modelling based on satellite data

2011

Abstract

Archives of Earth remote sensing data, acquired from orbiting satellites, contain large amounts of information that can be used both for research activities and decision support. Thematic categorization is one method to extract from satellite data meaningful information that humans can directly comprehend. An interactive system that permits to analyse geo-referenced thematic data and its evolution over time is proposed as a tool to efficiently exploit such vast and growing amount of data. This thesis describes the approach used in building the system, the data processing methodology, details architectural elements and graphical interfaces. Finally, this thesis provides an evaluation of potential uses of the features provided, performance levels and usability of an implementation hosting an archive of 15 years moderate resolution (1 Km, from the ATSR instrument) thematic data.
2011
Italiano
LUPPI, Eleonora
RUGGIERO, Valeria
Università degli Studi di Ferrara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/146150
Il codice NBN di questa tesi è URN:NBN:IT:UNIFE-146150