The object of this work was the development of an integrated analysis system ( in vivo and in vitro ) based on models eukaryotic (yeast and higher plants ) which allowed to study the phenomena of toxicity and resistance towards nanomaterials important from the environmental point of view . The research has followed an approach of functional genomics and systems biology , starting from the selection of resistant mutants of Arabidopsis thaliana in nanomaterials using CdS quantum dots , such as system analysis in vivo collections of insertional mutants . The two selected mutants were analyzed the phenotype and the genotype , demonstrating that the mechanism of resistance is not overlapped with resistance to Cd ion , known environmental contaminant. The analysis of gene expression in mutants with microarray has allowed to identify the genes involved in the response and tolerance , leading to interesting hypotheses about gene functions involved. This first part of the research is currently being prepared for publication . As subsequent development have been studied deletion mutants of Saccharomyces cerevisiae in a collection consisting of about 5000 strains, each of which had a deletion of a single ORF identified at the genomic level through a system type "bar code". Each mutant phenotype was assessed by growth in the presence of sub-lethal concentrations of nanomaterials. The mutants that showed a phenotype of growth significantly resistant or sensitive were became a key point of the research because knowledge of the ORF affected by the deletion allows to make assumptions about the role of the missing functions . Some of the most interesting genes were further studied with expression analysis, cloning and transformation . The approach of systems biology has used bioinformatics tools to identify genes and metabolic pathways most significantly related to the effect of nanomaterials. This research has allowed us to establish an approach to the study of the toxicity of nanomaterials correlating between their responses in eukaryotes belonging to different domains.
Il lavoro di ricerca di dottorato ha avuto come oggetto lo sviluppo di un sistema di analisi integrato (in vivo e in vitro) basato su modelli eucariotici (lievito e piante superiori) che ha consentito di studiare fenomeni di tossicità e resistenza nei confronti di nanomateriali importanti dal punto di vista ambientale. La ricerca ha seguito un approccio di genomica funzionale e system biology, partendo dalla selezione di mutanti di Arabidopsis thaliana resistenti a nanomateriali quantum dots CdS avvalendosi, come sistema di analisi in vivo, di collezioni di mutanti inserzionali. Dei due mutanti selezionati sono stati analizzati il fenotipo e il genotipo, dimostrando che il meccanismo di resistenza non si sovrapponeva alla resistenza allo ione Cd, noto contaminante ambientale. L'oggetto dello studio era quindi la tossicità dei nanomateriali in quanto tali. L'analisi di espressione genica nei mutanti con microarray ha consentito di evidenziare i geni coinvolti nella risposta e nella tolleranza, portando ad interessanti ipotesi sulle funzioni geniche coinvolte. Questa prima parte della ricerca è attualmente in corso di pubblicazione. Come successivo sviluppo sono stati studiati i mutanti per delezione di Saccharomyces cerevisiae di una collezione composta da circa 5000 ceppi ognuno dei quali presentava la delezione di una singola ORF individuabile a livello genomico attraverso un sistema tipo “bar code”. Di ciascun mutante è stato valutato il fenotipo di crescita in presenza di concentrazioni sub-letali di nanomateriali. I mutanti che mostravano un fenotipo di crescita significativamente resistente o sensibile sono quelli su cui si è focalizzata la ricerca, perché la conoscenza della ORF interessata dalla delezione consente di fare ipotesi sul ruolo delle funzioni mancanti. Alcuni dei geni più interessanti sono stati ulteriormente studiati con analisi di espressione, clonaggio e trasformazione. L'approccio di system biology ha impiegato strumenti bioinformatici per identificare i geni e i pathway metabolici più significativamente correlati all’effetto dei nanomateriali. Questa ricerca ha consentito di stabilire un approccio per lo studio della tossicità dei nanomateriali correlando tra di loro risposte in eucarioti appartenenti a domini diversi.
Biotechnology of nanoparticle interactions with plants and yeasts
2014
Abstract
The object of this work was the development of an integrated analysis system ( in vivo and in vitro ) based on models eukaryotic (yeast and higher plants ) which allowed to study the phenomena of toxicity and resistance towards nanomaterials important from the environmental point of view . The research has followed an approach of functional genomics and systems biology , starting from the selection of resistant mutants of Arabidopsis thaliana in nanomaterials using CdS quantum dots , such as system analysis in vivo collections of insertional mutants . The two selected mutants were analyzed the phenotype and the genotype , demonstrating that the mechanism of resistance is not overlapped with resistance to Cd ion , known environmental contaminant. The analysis of gene expression in mutants with microarray has allowed to identify the genes involved in the response and tolerance , leading to interesting hypotheses about gene functions involved. This first part of the research is currently being prepared for publication . As subsequent development have been studied deletion mutants of Saccharomyces cerevisiae in a collection consisting of about 5000 strains, each of which had a deletion of a single ORF identified at the genomic level through a system type "bar code". Each mutant phenotype was assessed by growth in the presence of sub-lethal concentrations of nanomaterials. The mutants that showed a phenotype of growth significantly resistant or sensitive were became a key point of the research because knowledge of the ORF affected by the deletion allows to make assumptions about the role of the missing functions . Some of the most interesting genes were further studied with expression analysis, cloning and transformation . The approach of systems biology has used bioinformatics tools to identify genes and metabolic pathways most significantly related to the effect of nanomaterials. This research has allowed us to establish an approach to the study of the toxicity of nanomaterials correlating between their responses in eukaryotes belonging to different domains.File | Dimensione | Formato | |
---|---|---|---|
Tesi%20PhD%20Pagano.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/146276
URN:NBN:IT:UNIPR-146276