Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures.
Logic learning and optimized drawing: two hard combinatorial problems
2018
Abstract
Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures.File | Dimensione | Formato | |
---|---|---|---|
Pastore_Tommaso_31.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/148179
URN:NBN:IT:UNINA-148179