In this thesis, new properties of AVL trees and a new partitioning of binary search trees named core partitioning scheme are discussed, this scheme is applied to three binary search trees namely AVL trees, weight-balanced trees, and plain binary search trees. We introduce the core partitioning scheme, which maintains a balanced search tree as a dynamic collection of complete balanced binary trees called cores. Using this technique we achieve the same theoretical efficiency of modern cache-oblivious data structures by using classic data structures such as weight-balanced trees or height balanced trees (e.g. AVL trees). We preserve the original topology and algorithms of the given balanced search tree using a simple post-processing with guaranteed performance to completely rebuild the changed cores (possibly all of them) after each update. Using our core partitioning scheme, we simultaneously achieve good memory allocation, space-efficient representation, and cache-obliviousness. We also apply this scheme to arbitrary binary search trees which can be unbalanced and we produce a new data structure, called Cache-Oblivious General Balanced Tree (COG-tree). Using our scheme, searching a key requires O(log_B n) block transfers and O(log n) comparisons in the external-memory and in the cache-oblivious model. These complexities are theoretically efficient. Interestingly, the core partition for weight-balanced trees and COG-tree can be maintained with amortized O(log_B n) block transfers per update, whereas maintaining the core partition for AVL trees requires more than a poly-logarithmic amortized cost. Studying the properties of these trees also lead us to some other new properties of AVL trees and trees with bounded degree, namely, we present and study gaps in AVL trees and we prove Tarjan et al.'s conjecture on the number of rotations in a sequence of deletions and insertions.

New Combinatorial Properties and Algorithms for AVL Trees

2016

Abstract

In this thesis, new properties of AVL trees and a new partitioning of binary search trees named core partitioning scheme are discussed, this scheme is applied to three binary search trees namely AVL trees, weight-balanced trees, and plain binary search trees. We introduce the core partitioning scheme, which maintains a balanced search tree as a dynamic collection of complete balanced binary trees called cores. Using this technique we achieve the same theoretical efficiency of modern cache-oblivious data structures by using classic data structures such as weight-balanced trees or height balanced trees (e.g. AVL trees). We preserve the original topology and algorithms of the given balanced search tree using a simple post-processing with guaranteed performance to completely rebuild the changed cores (possibly all of them) after each update. Using our core partitioning scheme, we simultaneously achieve good memory allocation, space-efficient representation, and cache-obliviousness. We also apply this scheme to arbitrary binary search trees which can be unbalanced and we produce a new data structure, called Cache-Oblivious General Balanced Tree (COG-tree). Using our scheme, searching a key requires O(log_B n) block transfers and O(log n) comparisons in the external-memory and in the cache-oblivious model. These complexities are theoretically efficient. Interestingly, the core partition for weight-balanced trees and COG-tree can be maintained with amortized O(log_B n) block transfers per update, whereas maintaining the core partition for AVL trees requires more than a poly-logarithmic amortized cost. Studying the properties of these trees also lead us to some other new properties of AVL trees and trees with bounded degree, namely, we present and study gaps in AVL trees and we prove Tarjan et al.'s conjecture on the number of rotations in a sequence of deletions and insertions.
21-apr-2016
Italiano
Pagli, Linda
Bernasconi, Anna
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
Thesis_Mahdi_Amani_2016_04_18.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 5.25 MB
Formato Adobe PDF
5.25 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/149129
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-149129