Nowadays, more than ever, digital forensics activities are involved in any criminal, civil or military investigation and represent a fundamental tool to support cyber-security. Investigators use a variety of techniques and proprietary software forensic applications to examine the copy of digital devices, searching hidden, deleted, encrypted, or damaged files or folders. Any evidence found is carefully analysed and documented in a "finding report" in preparation for legal proceedings that involve discovery, depositions, or actual litigation. The aim is to discover and analyse patterns of fraudulent activities. In this work, a new methodology is proposed to support investigators during the analysis process, correlating evidences found through different forensic tools. The methodology was implemented through a system able to add semantic assertion to data generated by forensics tools during extraction processes. These assertions enable more effective access to relevant information and enhanced retrieval and reasoning capabilities.

A semantic methodology for (un)structured digital evidences analysis

2018

Abstract

Nowadays, more than ever, digital forensics activities are involved in any criminal, civil or military investigation and represent a fundamental tool to support cyber-security. Investigators use a variety of techniques and proprietary software forensic applications to examine the copy of digital devices, searching hidden, deleted, encrypted, or damaged files or folders. Any evidence found is carefully analysed and documented in a "finding report" in preparation for legal proceedings that involve discovery, depositions, or actual litigation. The aim is to discover and analyse patterns of fraudulent activities. In this work, a new methodology is proposed to support investigators during the analysis process, correlating evidences found through different forensic tools. The methodology was implemented through a system able to add semantic assertion to data generated by forensics tools during extraction processes. These assertions enable more effective access to relevant information and enhanced retrieval and reasoning capabilities.
nov-2018
Italiano
Università degli Studi di Napoli Federico II
File in questo prodotto:
File Dimensione Formato  
Cozzolino_Giovanni_XXXI.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/149821
Il codice NBN di questa tesi è URN:NBN:IT:UNINA-149821