The present Thesis is focused on two emerging trends of the research on organic molecular materials. The first concerns the use of two-component, mixed stack charge transfer (CT) crystals, as it has been suggested that they might be good semiconductors with balanced hole and electron transport, coupled to the possibility of tuning the band gap and the potential control of the packing design. In general, flat, π-conjugated molecules constitute the building blocks of organic materials. The second concerns the search of bio-compatible molecules to reduce the actual massive amount of waste of electronic equipment. Most of the work of this Thesis has been devoted to [1:1] mixed stack CT crystals. These crystals are made up by an electron-donor (D) and -acceptor (A) π-conjugated molecule. From the perspective of materials research, several applicative aspects are being pursued, that span from ambipolar semiconductivity to ferroelectrics. Since the complex phenomenology regarding these systems depends on the interplay of the different interactions involved, it is important to explore the phase space of mixed stack CT crystals to understand and ultimately control the factors determining the physical properties of interest. Such a task has been the main focus of the present Thesis, and has been pursued by growing and characterizing several mixed stack CT crytals organized in “series”, in which only one of the components, the electron-acceptor molecule, is varied. One of the ideas to build bio-compatible semiconductors was to use ancient natural dyes. The last chapter reports the preliminary study of the polymorphism of one of them, quinacridone.
Questo lavoro di tesi si articola in due campi di ricerca emergenti nel panorama dei materiali molecolari organici.Il primo riguarda l'utilizzo di cristalli di composti binari a trasferimento di carica (CT) e impacchettamento misto (“mixed-stack”). E' stato infatti suggerito che tali composti CT potrebbero essere buoni semiconduttori, con un trasporto bilanciato di elettroni e lacune. Tali proprietà possono essere opportunamente combinate con la possibilità di modificare il “band gap” e di controllare la struttura dell'impacchettamento. La maggior parte del lavoro di questa tesi è stata dedicata allo studio di cristalli CT [1:1] a impacchettamento misto. Questi cristalli sono composti da molecole planari π-coniugate di elettron-donatori (D) ed elettron-accettori (A). Dal punto di vista della ricerca dei materiali, molti aspetti applicativi stanno venendo studiati, dai semiconduttori ambipolari alla ferroelettricità. Dato che varie interazioni contribuiscono al manifestarsi di una complessa fenomenologia, è importante esplorare lo spazio delle fasi dei cristalli CT a impacchettamento misto, per capire e controllare i fattori determinanti le proprietà fisiche di interesse. Questo è stato l'obbiettivo principale di questa tesi, e si è cercato di raggiungere tale scopo crescendo e caratterizzando vari cristalli CT a stack misto organizzati in “serie”, in cui solo uno dei dei due componenti, l'elettron-accettore viene cambiato. Una delle idee per costruire semiconduttori bio-compatibili è quella di usare antichi coloranti naturali, come il Chinacridone. E' stato possibile effettuare uno studio preliminare riguardante il polimorfismo di questo materiale, presentato nell'ultimo capitolo.
Organic Molecular Materials: Crystal Growth and Spectroscopic Characterization
2018
Abstract
The present Thesis is focused on two emerging trends of the research on organic molecular materials. The first concerns the use of two-component, mixed stack charge transfer (CT) crystals, as it has been suggested that they might be good semiconductors with balanced hole and electron transport, coupled to the possibility of tuning the band gap and the potential control of the packing design. In general, flat, π-conjugated molecules constitute the building blocks of organic materials. The second concerns the search of bio-compatible molecules to reduce the actual massive amount of waste of electronic equipment. Most of the work of this Thesis has been devoted to [1:1] mixed stack CT crystals. These crystals are made up by an electron-donor (D) and -acceptor (A) π-conjugated molecule. From the perspective of materials research, several applicative aspects are being pursued, that span from ambipolar semiconductivity to ferroelectrics. Since the complex phenomenology regarding these systems depends on the interplay of the different interactions involved, it is important to explore the phase space of mixed stack CT crystals to understand and ultimately control the factors determining the physical properties of interest. Such a task has been the main focus of the present Thesis, and has been pursued by growing and characterizing several mixed stack CT crytals organized in “series”, in which only one of the components, the electron-acceptor molecule, is varied. One of the ideas to build bio-compatible semiconductors was to use ancient natural dyes. The last chapter reports the preliminary study of the polymorphism of one of them, quinacridone.File | Dimensione | Formato | |
---|---|---|---|
Thesis_NC.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
8.38 MB
Formato
Adobe PDF
|
8.38 MB | Adobe PDF | |
rel3a_eng.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
121.8 kB
Formato
Adobe PDF
|
121.8 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/149926
URN:NBN:IT:UNIPR-149926