Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithms CControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT) Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithms CControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT) Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.

Integrating LEO Satellite Constellations into Internet Backbone

2007

Abstract

Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithms CControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT) Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithms CControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT) Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.
19-ago-2007
Italiano
Pelagatti, Susanna
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
Tesi_Yan_He.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/150442
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-150442