p53 protein, a potent transcription factor that is activated in response to different stresses and environmental insults, is the most widely studied tumour suppressor. It acts as an important defence mechanism against cancer onset and progression, acting as a 'guardian of the genome'. Clinical studies have shown that the development of Bladder Transitional Cell Carcinoma (BTCC) can lead to a significant overexpression of p53 in urine due to the high contact surface between the epithelial cancerous tissues and this biological fluid. Therefore, the dosage of this protein is considered a valuable screening tool to determine the presence of the disease and its stage of development, as well as for the optimization of therapeutic strategies. To date, diagnostic techniques used for its determination require long run times and high costs. A valid alternative approach is represented by biosensors, which are small, portable devices, easy-to-use, and give rapid and quantitative results. The purpose of the present study is the development of a diagnostic system based on disposable nanostructured substrates for the determination of the p53 protein as clinical evidence of bladder carcinoma. In particular we decided to develop an "immunosensor" i.e. a sensoristic transposition of immunoenzimatic assays. The development of the immuno-device involves the identification of the most appropriate transduction method, the most suitable strategies for the immobilization of the bioreceptor on the surface of the biosensor and the best method of detection and quantification of the protein. For this purpose, we devised a method based on the use of electrochemical immunosensors with amperometric transduction, considered the most consolidated and effective technique. Disposable "Screen-Printed" Carbon Electrodes (SPCEs) developed on ceramic substrate were used. The most critical point in the realization of a biosensor lies in the immobilization of the biological sensing element on the electrode surface in order to keep its functionality and biological activity. For this reason, we chose electrodes with working nanocomposite electrode functionalized with carbon nanotubes and gold nanoparticles (CNT-GNP). The presence of carbon nanotubes confers porosity, increasing the area available to bind the receptor to working electrode, while the presence of nanogold involves the formation of covalent bonds by means of chemisorption of the proteins on their surface. Our attention focused on a competitive assay after exploration of various experimental approaches. A two-factor three-level experimental design was used to determine the best conditions in terms of signal inhibition. On the basis of the optimization, we succeeded in obtaining a dynamic response of the sensor between 10 pM and 10 nM, as concentration values of p53 in competition. Detection and quantification limits calculated according to Eurachem guidelines were assessed, in physiological buffer (pH 7.4), at 35 (LOD) and 123 (LOQ) pM, respectively. Subsequently the method has been validated on real matrix (p53-spiked synthetic urine), in order to apply the immunosensor as rapid and non-invasive screening tool for early diagnosis of bladder carcinoma, showing excellent performances, comparable with those obtained in a physiological buffer. In this case, LOD and LOQ values of 14 and 100 pM were obtained, indicating the absence of “matrix effect”. For validation has also been developed a spectrophotometric ELISA test by transferring the analytical protocol on 96-polycarbonate wells. Sensoristic transposition has confirmed the potential of these devices, which compared with conventional ELISA have undoubted advantages in terms of versatility, portability of the instruments, and analytical sensitivity.
La proteina p53, è il soppressore tumorale più studiato e conosciuto ed è un fondamentale fattore trascrizionale, la cui azione viene modulata in risposta a diversi stimoli genetici e ambientali. Essa rappresenta un’importante difesa contro lo sviluppo del cancro e la sua progressione, agendo come un “guardiano del genoma”. Studi clinici hanno evidenziato che lo sviluppo del Carcinoma a cellule transizionali della vescica (BTCC) può determinare una significativa sovra espressione di p53 nell’urina, a causa dell’elevata superficie di contatto tra i tessuti epiteliali cancerosi e tale fluido biologico. Pertanto il dosaggio di questa proteina è considerato un valido strumento di screening per stabilire la presenza della malattia e il suo stadio di sviluppo. Ad oggi le tecniche diagnostiche utilizzate per la sua determinazione, richiedono tempi lunghi di esecuzione e costi elevati. Una soluzione è rappresentata dai biosensori, ovvero dispositivi piccoli, economici, portatili, di facile utilizzo e che permettono di ottenere misure rapide e quantitative. L’obiettivo del progetto di ricerca è stato, perciò, lo sviluppo e messa a punto di un sistema diagnostico, basato su tecnologia biosensoristica, per la determinazione della proteina p53, come prova clinica di cancro alla vescica. Più precisamente, abbiamo deciso di sviluppare un “immunosensore”, ovvero la trasposizione sensoristica dei saggi immunoenzimatici. A tale scopo sono stati scelti biosensori elettrochimici a trasduzione amperometrica, giacché considerata la tecnica più consolidata ed efficace dal punto di vista biologico. Abbiamo inoltre deciso di utilizzare elettrodi “sreen-printed” (SPEs) con supporto ceramico. Uno dei punti più critici nella realizzazione del biosensore risiede nell’immobilizzazione dell’elemento biologico sulla superficie elettrodica in modo tale da mantenere inalterata la sua funzione. Per tale motivo, abbiamo scelto elettrodi costituiti da un elettrodo di lavoro in glassy carbon funzionalizzato con un composito di nanotubi di carbonio, che conferiscono porosità aumentando la superficie disponibile, e nanoparticelle d’oro (CNT/GNP) che permettono il chemiadsorbimento dei biorecettori tramite i residui cisteinici della proteine di interesse, grazie all’elevata affinità dell’oro nei confronti dello zolfo. Uno studio preliminare molto articolato ha indicato l’approccio di tipo competitivo come il più adatto alla rivelazione e quantificazione della proteina target. Abbiamo quindi effettuato una ottimizzazione delle condizioni sperimentali tramite un “disegno sperimentale” a due fattori e tre livelli, stabilendo quali sono le condizioni migliori in termini di inibizione di segnale. Siamo riusciti così ad ottenere un intervallo dinamico di risposta del sensore compreso fra 10 pM e 10 nM, come valori di concentrazione di p53 in competizione. I limiti di rivelazione e quantificazione ottenuti in tampone fisiologico a pH 7.4 sono rispettivamente di 35 (LOD) e 123 (LOQ) pM. Il metodo è stato quindi validato in matrice reale (urina sintetica addizionata di p53), mostrando ottime prestazioni, confrontabili con quelle ottenute in PBS. In questo caso i limiti ottenuti sono stati rispettivamente di 14 (LOD) e 100 (LOQ) pM, indicando assenza di “effetto matrice”. A scopo di validazione è stato anche sviluppato un saggio ELISA a trasduzione spettrofotommerica, trasferendo il protocollo analitico su piastre da 96 pozzetti in policarbonato. La trasposizione sensoristica ha confermato le potenzialità di tali dispositivi che, rispetto all’ELISA convenzionale presentano indubbi vantaggi in termini di versatilità, portabilità della strumentazione e sensibilità analitica.
Immunosensore amperometrico competitivo per la determinazione di p53 in urina: metodo di screening rapido e non invasivo per la diagnosi precoce del carcinoma della vescica
2017
Abstract
p53 protein, a potent transcription factor that is activated in response to different stresses and environmental insults, is the most widely studied tumour suppressor. It acts as an important defence mechanism against cancer onset and progression, acting as a 'guardian of the genome'. Clinical studies have shown that the development of Bladder Transitional Cell Carcinoma (BTCC) can lead to a significant overexpression of p53 in urine due to the high contact surface between the epithelial cancerous tissues and this biological fluid. Therefore, the dosage of this protein is considered a valuable screening tool to determine the presence of the disease and its stage of development, as well as for the optimization of therapeutic strategies. To date, diagnostic techniques used for its determination require long run times and high costs. A valid alternative approach is represented by biosensors, which are small, portable devices, easy-to-use, and give rapid and quantitative results. The purpose of the present study is the development of a diagnostic system based on disposable nanostructured substrates for the determination of the p53 protein as clinical evidence of bladder carcinoma. In particular we decided to develop an "immunosensor" i.e. a sensoristic transposition of immunoenzimatic assays. The development of the immuno-device involves the identification of the most appropriate transduction method, the most suitable strategies for the immobilization of the bioreceptor on the surface of the biosensor and the best method of detection and quantification of the protein. For this purpose, we devised a method based on the use of electrochemical immunosensors with amperometric transduction, considered the most consolidated and effective technique. Disposable "Screen-Printed" Carbon Electrodes (SPCEs) developed on ceramic substrate were used. The most critical point in the realization of a biosensor lies in the immobilization of the biological sensing element on the electrode surface in order to keep its functionality and biological activity. For this reason, we chose electrodes with working nanocomposite electrode functionalized with carbon nanotubes and gold nanoparticles (CNT-GNP). The presence of carbon nanotubes confers porosity, increasing the area available to bind the receptor to working electrode, while the presence of nanogold involves the formation of covalent bonds by means of chemisorption of the proteins on their surface. Our attention focused on a competitive assay after exploration of various experimental approaches. A two-factor three-level experimental design was used to determine the best conditions in terms of signal inhibition. On the basis of the optimization, we succeeded in obtaining a dynamic response of the sensor between 10 pM and 10 nM, as concentration values of p53 in competition. Detection and quantification limits calculated according to Eurachem guidelines were assessed, in physiological buffer (pH 7.4), at 35 (LOD) and 123 (LOQ) pM, respectively. Subsequently the method has been validated on real matrix (p53-spiked synthetic urine), in order to apply the immunosensor as rapid and non-invasive screening tool for early diagnosis of bladder carcinoma, showing excellent performances, comparable with those obtained in a physiological buffer. In this case, LOD and LOQ values of 14 and 100 pM were obtained, indicating the absence of “matrix effect”. For validation has also been developed a spectrophotometric ELISA test by transferring the analytical protocol on 96-polycarbonate wells. Sensoristic transposition has confirmed the potential of these devices, which compared with conventional ELISA have undoubted advantages in terms of versatility, portability of the instruments, and analytical sensitivity.File | Dimensione | Formato | |
---|---|---|---|
Tesi%20PHD%20Maria%20Vittoria%20Bianchi.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
8.23 MB
Formato
Adobe PDF
|
8.23 MB | Adobe PDF | |
Medaglione%20PhD%20Maria%20Vittoria%20Bianchi.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
5.5 kB
Formato
Adobe PDF
|
5.5 kB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/152508
URN:NBN:IT:UNIPR-152508