The superimposition of a tangential motion on a conventional round jet has been demonstrated to significantly affect the large-scale topology of the flow. Swirling flows are widely employed, in the impinging configuration, in several industrial processes which involve both non-reacting and reacting applications. In the present dissertation, the simultaneously acquired thermal and three-dimensional velocity fields of an impinging hot jet emerging from a custom swirl generator in a cold ambient are presented. The velocity and temperature fields are experimentally measured using time-resolved Tomographic PIV and high-speed Infrared thermography in a combined system. A detailed description of a custom swirl generator is provided, and the time-averaged velocity profiles of a free swirling flow are discussed in order to estimate the swirl number. The instantaneous three-dimensional dynamics in proximity of the nozzle is discussed and the main features of a free swirling jet are investigated through the application of Proper Orthogonal Decomposition technique. The time-dependent features of velocity and temperature fields of an impinging swirling jet are investigated through the description of the time sequences of the temperature fluctuations and the synchronised instantaneous vortical structures. Taking advantage of the simultaneous acquisition and of the knowledge of the relative positioning of thermal and velocity frames, two different correlation techniques are applied, and their outcomes discussed.

Thermo-fluid-dynamics of impinging swirling jets

2018

Abstract

The superimposition of a tangential motion on a conventional round jet has been demonstrated to significantly affect the large-scale topology of the flow. Swirling flows are widely employed, in the impinging configuration, in several industrial processes which involve both non-reacting and reacting applications. In the present dissertation, the simultaneously acquired thermal and three-dimensional velocity fields of an impinging hot jet emerging from a custom swirl generator in a cold ambient are presented. The velocity and temperature fields are experimentally measured using time-resolved Tomographic PIV and high-speed Infrared thermography in a combined system. A detailed description of a custom swirl generator is provided, and the time-averaged velocity profiles of a free swirling flow are discussed in order to estimate the swirl number. The instantaneous three-dimensional dynamics in proximity of the nozzle is discussed and the main features of a free swirling jet are investigated through the application of Proper Orthogonal Decomposition technique. The time-dependent features of velocity and temperature fields of an impinging swirling jet are investigated through the description of the time sequences of the temperature fluctuations and the synchronised instantaneous vortical structures. Taking advantage of the simultaneous acquisition and of the knowledge of the relative positioning of thermal and velocity frames, two different correlation techniques are applied, and their outcomes discussed.
10-dic-2018
Italiano
Università degli Studi di Napoli Federico II
File in questo prodotto:
File Dimensione Formato  
Contino_Mattia_31.pdf

accesso solo da BNCF e BNCR

Tipologia: Altro materiale allegato
Dimensione 75.25 MB
Formato Adobe PDF
75.25 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/152712
Il codice NBN di questa tesi è URN:NBN:IT:UNINA-152712