In questa tesi vengono a rontati, e talvolta risolti, alcuni problemi sulla convergenza di algoritmi per punti ssi. A tali problemi, verr a a ancato inoltre l'ulteriore problema di stabilire quando tali algoritmi convergono a punti ssi che risultano essere soluzioni di disuguaglianze variazionali. I contributi scienti ci personali apportati alla teoria dei punti ssi, riguardano essenzialmente la ricerca di ottenere convergenza forte di uno o pi u metodi iterativi, laddove non e nota convergenza, o qualora e nota la sola convergenza debole. La struttura dei capitoli e articolata come segue: Nel primo capitolo vengono introdotti gli strumenti di base e i cosiddetti spazi ambiente in cui verranno mostrati i principali risultati. Inoltre verranno fornite tutte le propriet a sulle mappe nonlineari utili nelle dimostrazioni presenti nei capitoli successivi. Nel secondo capitolo, e presente una breve e mirata introduzione a quelli che sono alcuni dei risultati fondamentali sui metodi iterativi di punto sso pi u noti in lettaratura. Nel terzo capitolo, vengono mostrate le principali applicazioni dei metodi di approssi- mazione di punto sso. Nel quarto e nel quinto capitolo, vengono mostrati nei dettagli alcuni risultati riguardo un metodo iterativo di tipo Mann e il metodo iterativo di Halpern. In questi ultimi capitoli sono presenti i contributi dati alla teoria dell'approssimazione di punti ssi.

Fixed Point Iterations for Nonlinear Mappings

2015

Abstract

In questa tesi vengono a rontati, e talvolta risolti, alcuni problemi sulla convergenza di algoritmi per punti ssi. A tali problemi, verr a a ancato inoltre l'ulteriore problema di stabilire quando tali algoritmi convergono a punti ssi che risultano essere soluzioni di disuguaglianze variazionali. I contributi scienti ci personali apportati alla teoria dei punti ssi, riguardano essenzialmente la ricerca di ottenere convergenza forte di uno o pi u metodi iterativi, laddove non e nota convergenza, o qualora e nota la sola convergenza debole. La struttura dei capitoli e articolata come segue: Nel primo capitolo vengono introdotti gli strumenti di base e i cosiddetti spazi ambiente in cui verranno mostrati i principali risultati. Inoltre verranno fornite tutte le propriet a sulle mappe nonlineari utili nelle dimostrazioni presenti nei capitoli successivi. Nel secondo capitolo, e presente una breve e mirata introduzione a quelli che sono alcuni dei risultati fondamentali sui metodi iterativi di punto sso pi u noti in lettaratura. Nel terzo capitolo, vengono mostrate le principali applicazioni dei metodi di approssi- mazione di punto sso. Nel quarto e nel quinto capitolo, vengono mostrati nei dettagli alcuni risultati riguardo un metodo iterativo di tipo Mann e il metodo iterativo di Halpern. In questi ultimi capitoli sono presenti i contributi dati alla teoria dell'approssimazione di punti ssi.
15-dic-2015
Inglese
Mathematical analysis
Fixed point therory
Leone, Nicola
Marino, Giuseppe
Cianciaruso, Filomena
Università della Calabria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/153225
Il codice NBN di questa tesi è URN:NBN:IT:UNICAL-153225