Nell’ultimo decennio, la crescente richiesta di produzione di energia elettrica da fonti rinnovabili, ha generato una cospicua attenzione nei riguardi delle turbine eoliche. Si tratta di sistemi particolarmente complessi, che richiedono affidabilit`a, sicurezza, manutenzione e, soprattutto, efficienza nella produzione di potenza elettrica. Pertanto, sono sorte nuove sfide nel campo della ricerca e sviluppo, in particolare nel contesto della modellazione e del controllo. Sistemi di controllo sostenibile e all’avanguardia possono ottimizzare la conversione di energia e garantire determinate prestazioni, anche in presenza di condizioni di lavoro anomale, causate da malfunzionamenti e guasti inaspettati. Questa tesi tratta la tematica della diagnosi dei guasti e del controllo tollerante al guasto applicato alle turbine eoliche. Si propongono originali soluzioni relative al problema della pronta rivelazione del guasto e del suo trattamento. Il sistema di controllo che si `e sviluppato `e principalmente basato su un modulo di diagnosi del guasto, che ha il compito di fornire in tempo reale l’informazione sull’eventuale guasto presente, in modo da compensare l’azione di controllo. Il progetto degli stimatori di guasto riguarda strategie basate sui dati, poich´e offrono un efficace strumento per la gestione di sistemi le cui dinamiche sono scarsamente conosciute in termini analitici e presentano rumore e disturbi. Il primo di questi approcci basati sui dati `e ottenuto tramite modelli fuzzy Takagi-Sugeno (TS), derivanti dall’algoritmo di clustering c-means, seguito da una procedura di identificazione dei parametetri che risolve il problema della reiezione dei disturbi. Il secondo metodo proposto si serve di reti neurali artificiali per descrivere le relazioni fortemente non lineari che sussistono fra misure e guasti. L’architettura scelta fa parte della topologia Non lineare Autoregressiva con ingresso esogeno (NARX), dato che pu`o rappresentare l’evoluzione dinamica di un sistema nel tempo. L’addestramento della rete neurale sfrutta l’algoritmo di Levenberg-Marquardt con backpropagation, e processa un insieme di dati-obiettivo direttamente acquisiti. Gli schemi di diagnosi del guasto e controllo tollerante al guasto sono stati testati per mezzo di due modelli benchmark ad alta fedelt`a, i quali simulano rispettivamente il comportamento di una singola turbina e di un parco eolico, sia in condizioni normali, sia di guasto. Le prestazioni ottenute sono state confrontate con quelle di altre strategie di controllo, proposte in letteratura. Inoltre, un’analisi Monte Carlo ha validato la robustezza dei sistemi sviluppati, relativa a tipiche variazioni nei parametri, disturbi e incertezze. 1 2 Infine, si `e effettuato un test Hardware In the Loop (HIL), al fine di valutare le prestazioni in un contesto piu` realistico e real-time. L’efficacia mostrata dai risultati ottenuti suggerisce future ricerche sull’effettiva applicabilit`a industriale dei sistemi proposti.

Data-Driven Fault Diagnosis and Fault Tolerant Control of Wind Turbines

2016

Abstract

Nell’ultimo decennio, la crescente richiesta di produzione di energia elettrica da fonti rinnovabili, ha generato una cospicua attenzione nei riguardi delle turbine eoliche. Si tratta di sistemi particolarmente complessi, che richiedono affidabilit`a, sicurezza, manutenzione e, soprattutto, efficienza nella produzione di potenza elettrica. Pertanto, sono sorte nuove sfide nel campo della ricerca e sviluppo, in particolare nel contesto della modellazione e del controllo. Sistemi di controllo sostenibile e all’avanguardia possono ottimizzare la conversione di energia e garantire determinate prestazioni, anche in presenza di condizioni di lavoro anomale, causate da malfunzionamenti e guasti inaspettati. Questa tesi tratta la tematica della diagnosi dei guasti e del controllo tollerante al guasto applicato alle turbine eoliche. Si propongono originali soluzioni relative al problema della pronta rivelazione del guasto e del suo trattamento. Il sistema di controllo che si `e sviluppato `e principalmente basato su un modulo di diagnosi del guasto, che ha il compito di fornire in tempo reale l’informazione sull’eventuale guasto presente, in modo da compensare l’azione di controllo. Il progetto degli stimatori di guasto riguarda strategie basate sui dati, poich´e offrono un efficace strumento per la gestione di sistemi le cui dinamiche sono scarsamente conosciute in termini analitici e presentano rumore e disturbi. Il primo di questi approcci basati sui dati `e ottenuto tramite modelli fuzzy Takagi-Sugeno (TS), derivanti dall’algoritmo di clustering c-means, seguito da una procedura di identificazione dei parametetri che risolve il problema della reiezione dei disturbi. Il secondo metodo proposto si serve di reti neurali artificiali per descrivere le relazioni fortemente non lineari che sussistono fra misure e guasti. L’architettura scelta fa parte della topologia Non lineare Autoregressiva con ingresso esogeno (NARX), dato che pu`o rappresentare l’evoluzione dinamica di un sistema nel tempo. L’addestramento della rete neurale sfrutta l’algoritmo di Levenberg-Marquardt con backpropagation, e processa un insieme di dati-obiettivo direttamente acquisiti. Gli schemi di diagnosi del guasto e controllo tollerante al guasto sono stati testati per mezzo di due modelli benchmark ad alta fedelt`a, i quali simulano rispettivamente il comportamento di una singola turbina e di un parco eolico, sia in condizioni normali, sia di guasto. Le prestazioni ottenute sono state confrontate con quelle di altre strategie di controllo, proposte in letteratura. Inoltre, un’analisi Monte Carlo ha validato la robustezza dei sistemi sviluppati, relativa a tipiche variazioni nei parametri, disturbi e incertezze. 1 2 Infine, si `e effettuato un test Hardware In the Loop (HIL), al fine di valutare le prestazioni in un contesto piu` realistico e real-time. L’efficacia mostrata dai risultati ottenuti suggerisce future ricerche sull’effettiva applicabilit`a industriale dei sistemi proposti.
2016
Inglese
SIMANI, Silvio
TRILLO, Stefano
Università degli Studi di Ferrara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/153321
Il codice NBN di questa tesi è URN:NBN:IT:UNIFE-153321