Functional Magnetic Resonance Imaging (fMRI) is a technique that allows the study of sensory, motor, and cognitive functions of the brain. This thesis deals with the development of methods for the analysis of fMRI data: two major aspects of data analysis represented by confirmatory, or hypothesis driven, and exploratory, or data driven, approaches are taken into account. Within the hypothesis driven approaches, two mixed effects models were evaluated: the first uses an expectation maximization algorithm, for the simultaneous estimation of first and second level parameters of the model. The second employs a two stage procedure for estimating separately subjects and group related parameters. The two methods gave similar results on simulated dataset, while the first showed a better behaviour in real data set analysis we presented. Data driven methods as independent component analysis (ICA) can be used to solve the drawbacks of hypotheses driven methods, as the impossibility of detecting unmodelled or unexpected phenomena. The effectiveness of ICA in removing movement related artefacts, temporally correlated with the phenomenon of interest, has been evaluated, showing the strong influence of image noise on the final results. A novel approach to classify spatially Independent Components, and overcoming model order indeterminacy was proposed: the method here introduced performs a hierarchical clustering of the components by using a similarity measure derived from mutual information. This algorithm tested on simulated as well as real fMRI datasets has been proved to be a valid tool to detect and merge components derived from the splitting process due to overestimation of model order.

Hypothesis Driven and Data Driven Approaches for functional Magnetic Resonance Imaging Data Analysis. Model Enhancement Through Exploratory Tools

2006

Abstract

Functional Magnetic Resonance Imaging (fMRI) is a technique that allows the study of sensory, motor, and cognitive functions of the brain. This thesis deals with the development of methods for the analysis of fMRI data: two major aspects of data analysis represented by confirmatory, or hypothesis driven, and exploratory, or data driven, approaches are taken into account. Within the hypothesis driven approaches, two mixed effects models were evaluated: the first uses an expectation maximization algorithm, for the simultaneous estimation of first and second level parameters of the model. The second employs a two stage procedure for estimating separately subjects and group related parameters. The two methods gave similar results on simulated dataset, while the first showed a better behaviour in real data set analysis we presented. Data driven methods as independent component analysis (ICA) can be used to solve the drawbacks of hypotheses driven methods, as the impossibility of detecting unmodelled or unexpected phenomena. The effectiveness of ICA in removing movement related artefacts, temporally correlated with the phenomenon of interest, has been evaluated, showing the strong influence of image noise on the final results. A novel approach to classify spatially Independent Components, and overcoming model order indeterminacy was proposed: the method here introduced performs a hierarchical clustering of the components by using a similarity measure derived from mutual information. This algorithm tested on simulated as well as real fMRI datasets has been proved to be a valid tool to detect and merge components derived from the splitting process due to overestimation of model order.
28-dic-2006
Italiano
Landini, Luigi
Università degli Studi di Pisa
File in questo prodotto:
File Dimensione Formato  
appendices.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 454.19 kB
Formato Adobe PDF
454.19 kB Adobe PDF
bibliography.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 150.31 kB
Formato Adobe PDF
150.31 kB Adobe PDF
chapter_1.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 256.25 kB
Formato Adobe PDF
256.25 kB Adobe PDF
chapter_2.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 278.41 kB
Formato Adobe PDF
278.41 kB Adobe PDF
chapter_3.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF
chapter_4.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 298.76 kB
Formato Adobe PDF
298.76 kB Adobe PDF
chapter_5.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 647.26 kB
Formato Adobe PDF
647.26 kB Adobe PDF
chapter_6.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 312.88 kB
Formato Adobe PDF
312.88 kB Adobe PDF
chapter_7.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF
chapter_8.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 81.51 kB
Formato Adobe PDF
81.51 kB Adobe PDF
contents.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 59.73 kB
Formato Adobe PDF
59.73 kB Adobe PDF
Introduction.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 81.13 kB
Formato Adobe PDF
81.13 kB Adobe PDF
abstract.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 65.88 kB
Formato Adobe PDF
65.88 kB Adobe PDF
acknowledgments.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 38.75 kB
Formato Adobe PDF
38.75 kB Adobe PDF
title_page.pdf

embargo fino al 21/04/2046

Tipologia: Altro materiale allegato
Dimensione 71.05 kB
Formato Adobe PDF
71.05 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/153615
Il codice NBN di questa tesi è URN:NBN:IT:UNIPI-153615