In this work, type I collagen of Rattus norvegicus was investigated, a fibrous protein that is the main constituent of connective tissue in mammalians. Its basic unit, called tropocollagen, is made by a triple helix of about a thousand residues, typically constituted by repetitions of the triplet Gly-Xaa-Yaa, where one third of Xaa and Yaa are often proline and hydroxyproline. From the union of tropocollagens, that aggregate with a shift in the sequence of 234 residues, fibrils are formed, that, in turn, constitute the fibers. In this study, two aspect were addressed: the collagen self-assembly mechanism and its dehydration process, by means of molecular dynamics simulations (MD), UV and FTIR spectroscopy techniques. In the first study, we experimentally monitored the self-assembly of collagen by means of turbidity measurements at 310 nm at three different pH values (5.0, 7.0 and 8.0), observing that the slowest process is at neutral pH. In parallel, MD simulations were performed on two regions of collagen sequence with different hydropathicity (i.e, lowly charged and highly charged), monitoring the aggregation of two, three and four staggered tropocollagen fragments at different ionic strength. At physiological salt concentration the association of less charged regions occurs more easily not requiring a sequential order, whereas highly charged fragments need a sequential assembly and their aggregation is difficult. At low ionic strength, electrostatic interactions between neighboring tropocollagens prevail, leading, in most of cases, a fast and incorrect aggregation in which the staggering is not respected. In light of our results we could suggest that, under physiological conditions, a slower collagen association, beginning from lowly charged regions and driven by hydrophobic interactions, is needed for the correct packing and subsequent fibrils formation. The goal of the second study was to determine the changes induced on collagen by dehydration process, knowing that the water depletion causes damages in collagen molecules. We have performed MD simulations on the two kind of previously aggregated collagen microfibrils, firstly subjected to dehydration conditions up to the first shell, that is a layer of 3 Å of water molecule around protein (hydration level of 0.42/0.49 g/g) and then fully rehydrated. In dehydration conditions, collagen structure assumes a more compact and tubular shape, and water changes its distribution on the protein surface, forming cluster mainly around charged residues, with higher residence time. With fully rehydration of the system, collagen can recover its structural features, probably by the effect of the water molecules that in dehydrated conditions were trapped inside the assembly, avoiding the collapse of the fibril. Also, water changes in distribution and mobility during the dehydration process get back with rehydration. In parallel, FTIR and gravimetric measurements were achieved on collagen sample submitted to dehydration-rehydration treatment, reaching a very low hydration level (0.02 h). Water sorption isotherms show hysteresis, indicating that the distribution of water in the collagen sample does not completely correspond to the initial one. Amide I analysis show an irreversible increment of beta-sheet component after the whole treatment, indicating a growth of other fibrillar aggregates or an increment of fibril compactness, in agreement with MD simulation results. In light of these considerations, we can conclude that a moderate dehydration of 0.42/0.49 h induces reversible changes in the system, whereas strong dehydration (as 0.02 h) causes an irreversible collapse of the collagen structure, probably due to the loss of inner water.
Questo lavoro di tesi ha come oggetto il collagene di tipo I (Rattus norvegicus), proteina fibrosa che rappresenta il principale costituente del tessuto connettivo nei mammiferi. La sua unità di base, il tropocollagene, consiste in una tripla elica di un migliaio di residui, tipicamente composta da ripetizioni della tripletta Gly-Xaa-Yaa, in cui le posizioni Xaa e Yaa sono occupate per il 30% da proline e da idrossiproline. Dall’unione di più tropocollageni, che aggregano con uno sfasamento di circa 234 residui nella sequenza, si formano le fibrille, che a loro volta si organizzano in fibre. In questo studio sono stati approfonditi due aspetti, ossia il meccanismo di aggregazione e il processo di disidratazione del collagene, mediante simulazioni di dinamica molecolare (MD) e spettroscopia UV e FTIR. Nel primo studio, abbiamo seguito sperimentalmente l’aggregazione del collagene mediante misure di torbidità a 310 nm, a tre diversi pH (5.0, 7.0 e 8.0), osservando un processo più lento a pH neutro. In parallelo, sono state implementate simulazioni di MD variando la forza ionica, per monitorare l’aggregazione di due, tre e quattro frammenti, sfasati di 234 residui, dopo aver selezionato dalla sequenza del collagene due regioni con diversa idropaticità, ovvero poco cariche (LC) e molto cariche (HC). In concentrazione salina fisiologica, l’aggregazione dei frammenti poco carichi avviene spontaneamente e non richiede un ordine sequenziale mentre quella dei frammenti molto carichi avviene con difficoltà e richiede sequenzialità. A bassa forza ionica invece prevalgono le interazioni elettrostatiche tra tropocollageni adiacenti, guidando, nella maggior parte dei casi, una veloce e non corretta aggregazione, che provoca uno shift dei tropocollageni. Quello che emerge da questo studio è che in condizioni fisiologiche, un’aggregazione più lenta che inizia dalle regioni poco cariche e che è guidata da interazioni idrofobiche è necessaria per una fibrilllogenesi corretta e sequenziale. Il secondo studio ha avuto come obiettivo la determinazione dei cambiamenti indotti dal processo di disidratazione del collagene, dal momento che la mancanza di acqua causa danni anche irreversibili nelle molecole di collagene. Abbiamo eseguito simulazioni di MD sulle due tipologie, LC e HC, di microfibrille di collagene fatte aggregare precedentemente, dapprima disidratate fino alla prima shell di idratazione, ovvero mantenendo solo un layer di molecole d'acqua di 3 Å attorno alla proteina (idratazione di 0.42/0.49 g/g) e poi reidratate totalmente. In condizioni di disidratazione la struttura del collagene viene ad assumere una forma più compatta e tubulare e l'acqua si ridistribuisce sulla superficie raggruppandosi in cluster principalmente attorno a residui carichi, con tempi di permanenza maggiori. Reidratando, il collagene è in grado recuperare i suoi aspetti strutturali inziali, probabilmente per effetto delle molecole d'acqua che, anche in condizioni di disidratazione, erano rimaste intrappolate all'interno della struttura evitando il collasso della fibrilla. Anche l’acqua ritorna ad avere la mobilità e la distribuzione iniziale. In parallelo, abbiamo eseguito misurazioni FTIR e gravimetriche sul campione di collagene sottoposto ad un trattamento di disidratazione-reidratazione, in cui il campione raggiungeva una disidratazione spinta (0.02 h). Le isoterme di desorbimento/adsorbimento dell’acqua mostrano un’isteresi, indicando che la distribuzione dell’acqua nel campione non corrisponde a quella nello stato iniziale. Dall’analisi della banda Amide I osserviamo un aumento della struttura beta dopo l’intero trattamento, indicando una crescita di aggregati fibrillari e/o un aumento di compattezza, in accordo con i risultati delle simulazioni. Alla luce di ciò, possiamo ipotizzare che una disidratazione moderata fino a 0.42/0.49 h induca nel collagene cambiamenti reversibili, mentre una pesante disidratazione (come 0.02 h) causi un irreversibile collasso della struttura del collagene, probabilmente dovuta alla perdita delle molecole d'acqua intrappolate all'interno.
Studio del meccanismo di aggregazione e dei processi di disidratazione del collagene tramite simulazioni di dinamica molecolare e misure di spettroscopia FTIR e UV
2021
Abstract
In this work, type I collagen of Rattus norvegicus was investigated, a fibrous protein that is the main constituent of connective tissue in mammalians. Its basic unit, called tropocollagen, is made by a triple helix of about a thousand residues, typically constituted by repetitions of the triplet Gly-Xaa-Yaa, where one third of Xaa and Yaa are often proline and hydroxyproline. From the union of tropocollagens, that aggregate with a shift in the sequence of 234 residues, fibrils are formed, that, in turn, constitute the fibers. In this study, two aspect were addressed: the collagen self-assembly mechanism and its dehydration process, by means of molecular dynamics simulations (MD), UV and FTIR spectroscopy techniques. In the first study, we experimentally monitored the self-assembly of collagen by means of turbidity measurements at 310 nm at three different pH values (5.0, 7.0 and 8.0), observing that the slowest process is at neutral pH. In parallel, MD simulations were performed on two regions of collagen sequence with different hydropathicity (i.e, lowly charged and highly charged), monitoring the aggregation of two, three and four staggered tropocollagen fragments at different ionic strength. At physiological salt concentration the association of less charged regions occurs more easily not requiring a sequential order, whereas highly charged fragments need a sequential assembly and their aggregation is difficult. At low ionic strength, electrostatic interactions between neighboring tropocollagens prevail, leading, in most of cases, a fast and incorrect aggregation in which the staggering is not respected. In light of our results we could suggest that, under physiological conditions, a slower collagen association, beginning from lowly charged regions and driven by hydrophobic interactions, is needed for the correct packing and subsequent fibrils formation. The goal of the second study was to determine the changes induced on collagen by dehydration process, knowing that the water depletion causes damages in collagen molecules. We have performed MD simulations on the two kind of previously aggregated collagen microfibrils, firstly subjected to dehydration conditions up to the first shell, that is a layer of 3 Å of water molecule around protein (hydration level of 0.42/0.49 g/g) and then fully rehydrated. In dehydration conditions, collagen structure assumes a more compact and tubular shape, and water changes its distribution on the protein surface, forming cluster mainly around charged residues, with higher residence time. With fully rehydration of the system, collagen can recover its structural features, probably by the effect of the water molecules that in dehydrated conditions were trapped inside the assembly, avoiding the collapse of the fibril. Also, water changes in distribution and mobility during the dehydration process get back with rehydration. In parallel, FTIR and gravimetric measurements were achieved on collagen sample submitted to dehydration-rehydration treatment, reaching a very low hydration level (0.02 h). Water sorption isotherms show hysteresis, indicating that the distribution of water in the collagen sample does not completely correspond to the initial one. Amide I analysis show an irreversible increment of beta-sheet component after the whole treatment, indicating a growth of other fibrillar aggregates or an increment of fibril compactness, in agreement with MD simulation results. In light of these considerations, we can conclude that a moderate dehydration of 0.42/0.49 h induces reversible changes in the system, whereas strong dehydration (as 0.02 h) causes an irreversible collapse of the collagen structure, probably due to the loss of inner water.File | Dimensione | Formato | |
---|---|---|---|
RelazioneFinale_LudovicaLeo.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
5.5 kB
Formato
Adobe PDF
|
5.5 kB | Adobe PDF | |
Tesi-Ludovica_Leo.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
6.89 MB
Formato
Adobe PDF
|
6.89 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/153661
URN:NBN:IT:UNIPR-153661