Within the frame of the bioactivity assessment of foodborne compounds, the present thesis work was aimed to apply computational methods for the analysis of xenobiotics and natural compounds. Firstly, the most relevant approaches and software in molecular modeling were carefully surveyed and adapted with the aim to rationally design the experimental strategies. Then a series of relevant case study were investigated including the bioactivity assessment of mycotoxins, which occur as contaminants in food, and several healthy food constituents of natural origin. The study of the putative effects on the bioactivity after metabolic modifications by human and plant was particularly emphasized. Overall, the computational methods herein presented proved to be a straightforward support for the experimental characterization of a wide number of compounds and toward several biological endpoints. On the one side, this work is a first step towards the design of an innovative framework to support the hazard identification at an early stage of risk assessment. On the other side it was presented an affordable method to better characterize bioactive molecules from molecular point of view, also in the aim to discover novel health-protective compounds.
Il presente lavoro di tesi è finalizzato ad applicare metodi computazionali all’analisi di xenobiotici e composti naturali nel contesto della valutazione della bioattività dei composti di origine alimentare. In primo luogo è stata fatta una panoramica sulle più importanti metodiche e sui software in uso nella modellistica molecolare al fine di progettare razionalmente gli esperimenti. Dopodiché sono stati affrontati una serie di importanti casi di studio, tra cui la valutazione della bioattività di micotossine presenti come contaminati negli alimenti e di diversi componenti alimentari di origine naturale. È stato particolarmente enfatizzato lo studio dei potenziali effetti dovuti alle modifiche metaboliche da parte del metabolismo di uomo e di pianta. Complessivamente le metodiche computazionali presentate si sono dimostrate un valido supporto per la caratterizzazione sperimentale di un vasto numero di composti e verso un vasto spettro di eventi biologici. Da un lato, il lavoro si propone come primo passo verso un innovativo schema di lavoro per la “hazard identification” nelle fasi preliminari della valutazione del rischio. Dall’altro si propone come metodo utile per caratterizzare i composti bioattivi da un punto di vista molecolare, anche con il fine di identificare nuovi composti aventi effetti positivi sulla salute.
Computational Analysis of Foodborne Xenobiotics and Natural Compounds
2015
Abstract
Within the frame of the bioactivity assessment of foodborne compounds, the present thesis work was aimed to apply computational methods for the analysis of xenobiotics and natural compounds. Firstly, the most relevant approaches and software in molecular modeling were carefully surveyed and adapted with the aim to rationally design the experimental strategies. Then a series of relevant case study were investigated including the bioactivity assessment of mycotoxins, which occur as contaminants in food, and several healthy food constituents of natural origin. The study of the putative effects on the bioactivity after metabolic modifications by human and plant was particularly emphasized. Overall, the computational methods herein presented proved to be a straightforward support for the experimental characterization of a wide number of compounds and toward several biological endpoints. On the one side, this work is a first step towards the design of an innovative framework to support the hazard identification at an early stage of risk assessment. On the other side it was presented an affordable method to better characterize bioactive molecules from molecular point of view, also in the aim to discover novel health-protective compounds.File | Dimensione | Formato | |
---|---|---|---|
Dellafiora_thesis_FINAL.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
6.41 MB
Formato
Adobe PDF
|
6.41 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/154178
URN:NBN:IT:UNIPR-154178