The mitochondrial succinate dehydrogenase (SDH or complex II or cII) is a critical enzyme linking the Krebs cycle and the mitochondrial respiratory chain. SDH is an iron-sulfur flavoprotein that catalyzes the oxidation of succinate to fumarate and the reduction of ubiquinone to ubiquinol. It consists of four structurally and functionally different subunits all encoded by nuclear genes (SDHA-SDHD): the SdhA and SdhB subunits form the catalytic dimer on the matrix face of the inner mitochondrial membrane while SdhC and SdhD subunits anchor the catalytic dimer to the membrane. Despite the extensive knowledge on structural and catalytic properties of the complex, only recently two assembly factors specific for the SDH have been identified: SHDAF1 and SDHAF2. Genetic defects of individual components of SDH cause distinct human diseases. Whilst heterozygous mutations in SDH subunit B, C and D encoding genes predispose to heritable endocrine neoplasias such as Pheochromocytomas and Paragangliomas called “PHEO-PGL syndrome” homozygote mutations in SDHA cause the Leigh syndrome, an early onset encephalopathy, although recently a case of paraganglioma has been associated with a mutation in SDHA. Also mutations in assembly factors encoding genes cause both typical mitochondrial disease and cancer: in fact mutations in SDHAF1 lead to infantile leukoencephalopathy and mutations in SDHAF2 segregate with hereditary paraganglioma. PGLs and PHEOs tumors frequently present a somatic inactivation of the wild-type allele indicating that SDH are typical tumor suppressor genes since they need two events for inactivation. Genetic testing for mutations in these tumor susceptibility genes is now a common practice: regarding PGL and PHEO syndromes a broad spectrum of mutations in SDHB, C, D has been reported. In addition to mutations that are highly likely to cause disease, such as deletions or truncations, mutation screening often finds missense substitutions that are of uncertain significance. Unclassified missense substitutions would represent a problem unless the cause–effect link between this kind of mutation and the disease is established by functional studies. Several studies demonstrated that yeast is a suitable in vivo model system to validate the pathogenic significance of mutations in genes involved in mitochondrial diseases, thanks to the similarity of orthologous yeast vs. human OXPHOS-related genes, and the ability of the yeast to survive the loss of respiratory function and of mtDNA, provided that a fermentative carbon source is made available. In previous studies yeast model has been adopted to study the functional consequences of SDH gene mutations on the enzymatic as well as the respiratory activity of SDH or mitochondrial complex II being SDH complex highly conserved through evolution. Also in yeast SDH is encoded by four nuclear genes SDH1 to SDH4 that have been isolated and characterized. Recently, to obviate the lack of a human neural crest derived cell line devoted to assess the pathogenic significance of a novel SDHB germline missense mutation diagnosed in a patient affected by a glomus tumor, functional studies in yeast have been performed. In this thesis we report on the molecular features of a set of SDHB-C-D mutations whose effect was studied in yeast, by evaluating oxidative growth phenotype, succinate dehydrogenase activity, oxygen consumption as well as other associated phenotypes such as sensitivity to oxidative stress and extended mtDNA mutability.
Il complesso II della catena respiratoria, cII, (succinato-ubichinone ossido reduttasi o succinato deidrogenasi, SDH) è l’enzima che lega l’attività del ciclo di Krebs e il trasporto di elettroni nella membrana mitocondriale: SDH è una ferro-zolfo flavoproteina che catalizza l’ossidazione del succinato a fumarato e la riduzione dell’ubichinone a ubichinolo. L’enzima è costituito da quattro sub-unità strutturalmente e funzionalmente diverse tutte codificate da geni nucleari (SDHA-SDHD): le sub-unità SdhA e SdhB formano il dimero catalitico ancorato alla membrana interna sul lato rivolto verso la matrice, mentre le sub-unità SdhCe SdhD ancorano il dimero catalitico alla membrana. Nonostante la vasta conoscenza sulle proprietà strutturali e catalitiche del complesso, solo di recente sono stati identificati due assemblatori specifici per SDH: SDHAF1 e SDHAF2. Difetti genetici dei singoli componenti della succinato deidrogenasi, sono causa nell’uomo di patologie diverse. Mentre mutazioni eterozigoti nei geni che codificano per le sub-unità B, C e D predispongono a neoplasie ereditarie come feocromocitoma (PHEO: pheochromocytoma) e paraganglioma (PGL), chiamate “PHEO-PGL syndrome”, mutazioni omozogoti in SDHA causano la sindrome di Leigh, un’encefalopatia sub-acuta necrotizzante (SNEM), una malattia neurodegenerativa progressiva infantile, anche se di recente un caso di paraganglioma è stato associato con una mutazione in SDHA. Anche mutazioni nei geni che codificano per i fattori di assemblaggio sono state associate sia a una tipica malattia mitocondriale, sia al cancro: mutazioni in SDHAF1causano la leucoencefalopatia infantile e mutazioni in SDHAF2 sono state associate a paraganglioma ereditario. PGL e PHEO spesso presentano una inattivazione somatica dell’allele wild-type, questo indica che i geni SDH hanno il tipico comportamento dei geni tumor suppressor, in quanto hanno bisogno di due eventi per la loro inattivazione. Test genetici per mutazioni nei geni di suscettibilità di questi tumori sono ormai una pratica comune: per quanto riguarda le sindromi PGL e PHEO sono note un ampio spettro di mutazioni in SDHB, C e D. Oltre alle mutazioni che sono sicuramente causa della malattia, come mutazioni non senso o delezioni, con lo screening delle mutazioni si sono spesso trovate sostituzioni missenso, che sono di incerto significato. Sono necessari, quindi, studi funzionali per trovare il legame causa effetto tra queste sostituzioni missenso e la malattia. Diversi studi hanno dimostrato che il lievito è un sistema modello in vivo adatto per validare il significato patogeno delle mutazioni nei geni coinvolti in malattie mitocondriali, grazie alla somiglianza di ortologhi di lievito di geni umani coinvolti nella fosforilazione ossidativa, nonché la capacità del lievito di sopravvivere alla perdita della funzione respiratoria e del DNA mitocondriale, a condizione che sia disponibile una fonte di carbonio fermentabile. In studi precedenti il lievito è stato usato come modello per studiare le conseguenze funzionali di mutazioni nei geni SDH sull’attività della succinato deidrogenasi, così come sull’attività respiratoria mitocondriale, questi studi sono possibili perché il complesso SDH è altamente conservato. Anche in lievito la succinato deidrogenasi è codificata da quattro geni nucleari SDH1-4 che sono stati isolati e caratterizzati. Recentemente per ovviare alla mancanza di una linea cellulare di derivazione della cresta neurale da poter utilizzare per valutare l’importanza patogena di una nuova mutazione germinale missenso nel gene SDHB in un paziente affetto da tumore glomico si è utilizzato il lievito per studi funzionali. In questo lavoro di tesi sono riportate le caratteristiche molecolari di una serie di mutazioni nei geni SDHB, C e D il cui effetto è stato studiato in lievito, valutando il fenotipo di crescita ossidativa, l’attività della succinato deidrogenasi, il consumo di ossigeno e di altri fenotipi come la sensibilità allo stress ossidativo e la mutabilità del mtDNA.
Analisi funzionale in Saccharomyces cerevisiae delle varianti missenso nei “tumor suppressor genes” SDH
2011
Abstract
The mitochondrial succinate dehydrogenase (SDH or complex II or cII) is a critical enzyme linking the Krebs cycle and the mitochondrial respiratory chain. SDH is an iron-sulfur flavoprotein that catalyzes the oxidation of succinate to fumarate and the reduction of ubiquinone to ubiquinol. It consists of four structurally and functionally different subunits all encoded by nuclear genes (SDHA-SDHD): the SdhA and SdhB subunits form the catalytic dimer on the matrix face of the inner mitochondrial membrane while SdhC and SdhD subunits anchor the catalytic dimer to the membrane. Despite the extensive knowledge on structural and catalytic properties of the complex, only recently two assembly factors specific for the SDH have been identified: SHDAF1 and SDHAF2. Genetic defects of individual components of SDH cause distinct human diseases. Whilst heterozygous mutations in SDH subunit B, C and D encoding genes predispose to heritable endocrine neoplasias such as Pheochromocytomas and Paragangliomas called “PHEO-PGL syndrome” homozygote mutations in SDHA cause the Leigh syndrome, an early onset encephalopathy, although recently a case of paraganglioma has been associated with a mutation in SDHA. Also mutations in assembly factors encoding genes cause both typical mitochondrial disease and cancer: in fact mutations in SDHAF1 lead to infantile leukoencephalopathy and mutations in SDHAF2 segregate with hereditary paraganglioma. PGLs and PHEOs tumors frequently present a somatic inactivation of the wild-type allele indicating that SDH are typical tumor suppressor genes since they need two events for inactivation. Genetic testing for mutations in these tumor susceptibility genes is now a common practice: regarding PGL and PHEO syndromes a broad spectrum of mutations in SDHB, C, D has been reported. In addition to mutations that are highly likely to cause disease, such as deletions or truncations, mutation screening often finds missense substitutions that are of uncertain significance. Unclassified missense substitutions would represent a problem unless the cause–effect link between this kind of mutation and the disease is established by functional studies. Several studies demonstrated that yeast is a suitable in vivo model system to validate the pathogenic significance of mutations in genes involved in mitochondrial diseases, thanks to the similarity of orthologous yeast vs. human OXPHOS-related genes, and the ability of the yeast to survive the loss of respiratory function and of mtDNA, provided that a fermentative carbon source is made available. In previous studies yeast model has been adopted to study the functional consequences of SDH gene mutations on the enzymatic as well as the respiratory activity of SDH or mitochondrial complex II being SDH complex highly conserved through evolution. Also in yeast SDH is encoded by four nuclear genes SDH1 to SDH4 that have been isolated and characterized. Recently, to obviate the lack of a human neural crest derived cell line devoted to assess the pathogenic significance of a novel SDHB germline missense mutation diagnosed in a patient affected by a glomus tumor, functional studies in yeast have been performed. In this thesis we report on the molecular features of a set of SDHB-C-D mutations whose effect was studied in yeast, by evaluating oxidative growth phenotype, succinate dehydrogenase activity, oxygen consumption as well as other associated phenotypes such as sensitivity to oxidative stress and extended mtDNA mutability.File | Dimensione | Formato | |
---|---|---|---|
Elena%20Panizza.pdf
accesso solo da BNCF e BNCR
Tipologia:
Altro materiale allegato
Dimensione
4.91 MB
Formato
Adobe PDF
|
4.91 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/154255
URN:NBN:IT:UNIPR-154255