The current European building stock is aging, requiring significant renovation efforts to enhance energy performance and ensure structural safety. Most existing buildings were built before energy and structural regulations were enforced, thus failing to meet current standards. By 2050, nearly 70% of the current building stock is expected to still be in use, which necessitates a strategic, long-term renovation approach to address future EU challenges. Furthermore, buildings are significant contributors to global energy consumption and carbon emissions, accounting for approximately 40% of the world’s energy demand and 36% of CO2 emissions. This highlights the urgent need for a comprehensive renovation strategy to reduce energy use and mitigate environmental impact. European policymakers have acknowledged the potential energy savings through the renovating existing building stocks, empha-sizing the need for a sustainable, integrated approach to energy and structural build-ing design, as outlined in the Energy Performance of Buildings Directives (EPBD). To address these challenges, the construction sector must undergo transformation and adaptation. The European Construction Sector Observatory (ECSO) underlines signif-icant changes in production processes and sustainable growth models, driven by policies and market demand responding to megatrends like digitalization, climate change, and the circular economy. However, the complexity and cost of renovations are considerable, as they involve the integration of several components and consid-erations, prompting the exploration of industrialized solutions. Prefabrication, an al-ternative to conventional construction, offers advantages such as enhanced product quality, reduced construction time and costs, improved environmental performance, and aesthetic integrity. However, a holistic approach considering energy, sustainabil-ity, resource efficiency, circular economy principles, and affordability is essential for effective building renovation, emphasizing interventions to solve structural issues and improve energy performance throughout the whole lifecycle. In line with these considerations, the present doctoral research focuses on designing and industrially producing a modular prefabricated load-bearing and self-supporting building com-ponent for floors, so called R2 Slab. The component combines reinforced concrete and Sintered Expanded Polystyrene (EPS) for technological and energy recovery of existing residential buildings. The innovative slab was designed to be integrated into masonry and reinforced concrete-framed structures, the most common existing buildings typologies in Italian territory. The design incorporates recycled materials to support circular economy principles and construction sustainability: a novel lost-formwork made from recycled EPS, mechanically and thermally optimised, was de-veloped and tested to create an insulating material that meets sustainable regulatory requirements (Minimum Environmetal Criteria - Criteri Ambientali Minimi). Extensive numerical analyses using finite element models were conducted to understand and enhance the structural, thermal, and acoustic properties of the component, leading to technical improvements. Prototyping has confirmed the feasibility of the design and production, with installation tests yielding positive results, validating the installa-tion procedure. To further validate the component's features, field tests were con-ducted to confirm the performance established through numerical analysis. Addi-tionally, advancements in sensor technology and digital tools, such as Digital Twin and Industry 4.0 innovations, have led to proof of concept related to the integration into the prefabricated component of monitoring sensors connected to a data-receiving platform through the Internet of Things (IoT) technology, creating a smart component capable of real-time monitoring from production through its operational lifecycle. The IoT monitoring system allows for long-term control and the ability to predict the component's performance, durability, and service life. This capability en-ables sophisticated predictive maintenance strategies to ensure the quality and relia-bility of the component over time. This approach not only meets the current needs but also prepares the construction sector for future challenges, driving the transfor-mation towards more sustainable, efficient, and resilient building practices.
L'attuale patrimonio edilizio europeo sta subendo un processo di invecchiamento che richiede sforzi di rinnovamento significativi per migliorarne le prestazioni energe-tiche e garantire la sicurezza strutturale. La maggior parte degli edifici esistenti non è conforme agli attuali standard edilizi, in quando la sua costruzione è antecedente all’entrata in vigore di normative che tenessero in considerazione aspetti quali effi-cienza energetica e sicurezza nei confronti dell’azione sismica. Nel 2050, il 70% di queste strutture sarà ancora in uso, e una strategia di rinnovamento sistematica e a lungo termine è indispensabile per affrontare le sfide future, ampliamente promosse e discusse dall’Unione Europea. Inoltre, poiché gli edifici sono responsabili di circa il 40% della richiesta globale di energia e del 36% delle emissioni di CO2, attuare il rin-novamento del patrimonio diventa prioritario. La politica europea ha riconosciuto il potenziale risparmio energetico legato al rinnovamento del patrimonio edilizio esi-stente, sottolineando la necessità di un approccio sostenibile e integrato, indirizzato alla progettazione energetica e strutturale degli edifici, come indicato nelle Energy Performance of Buildings Directives (EPBD). Per far fronte a queste esigenze, il set-tore delle costruzioni deve trasformarsi e adattarsi. L'Osservatorio Europeo del Setto-re delle Costruzioni (ECSO) sottolinea cambiamenti significativi in atto nei processi produttivi e nei modelli di crescita sostenibile, guidati dalle politiche e dalla richiesta del mercato in risposta a megatrend quali la digitalizzazione, il cambiamento climatico e l'economia circolare. Tuttavia, la complessità e il costo legato al rinnovamento degli edifici sono considerevoli e acuiti dalla necessità di integrazione di più componenti, spingendo all’esplorazione di soluzioni industrializzate. La prefabbricazione infatti, un'alternativa all'edilizia convenzionale, offre vantaggi quali una maggiore qualità del prodotto, tempi e costi di costruzione ridotti, migliori prestazioni ambientali e integrità estetica. Tuttavia, un approccio olistico che consideri l'energia, la sostenibilità, l'effi-cienza delle risorse, i principi dell'economia circolare e l'accessibilità economica è es-senziale per un rinnovamento efficace, con particolare riguardo per gli interventi atti a migliorare sia la performance strutturale sia quella energetica, considerando l'intero ciclo di vita dell’edifico e delle sue parti. In linea con queste considerazioni, il proget-to di ricerca riguarda la progettazione e la produzione industriale di un componente edilizio modulare prefabbricato di tipo portante e autoportante per la realizzazione di solai semi prefabbricati, denominato R2 Slab. Il componente combina calcestruzzo armato e polistirene espanso sinterizzato (EPS) per il recupero tecnologico ed ener-getico degli edifici residenziali esistenti. Il componente innovativo è stato concepito per essere inserito in edifici in muratura portante e struttura intelaiata in calcestruzzo armato, ossia le tipologie di edifici esistenti più comuni sul territorio italiano. Il design di R2 Slab incorpora materiali riciclati per supportare i principi dell'economia circolare e della sostenibilità nel settore delle costruzioni: nello specifico, è stato progettato un cassero a perdere in EPS contente una percentuale di materiale riciclato, che lo ren-de conforme ai Criteri Ambientali Minimi (CAM). Attraverso la modellazione in soft-ware ad elementi finiti, sono state condotte analisi numeriche per valutare e migliora-re le caratteristiche di resistenza strutturale, e di isolamento termico e acustico dell’intero componente. La sua successiva prototipazione ne ha verificato la fattibilità di produzione e la definizione dei dettagli costruttivi, mentre i test condotti in campo hanno supportato e confermato le prestazioni verificate attraverso le analisi numeri-che. Inoltre, i progressi tecnologici nell’ambito della sensoristica e degli strumenti di-gitali - come il Digital Twin e le innovazioni dell'Industria 4.0 - hanno portato a una “proof of concept” relativa all'integrazione nel componente prefabbricato di sensori di monitoraggio collegati a una piattaforma di ricezione dati tramite tecnologia IoT (In-ternet of Things), creando uno “smart component”. L’intero sistema di monitorag-gio, oltre a consentire il monitoraggio del componente in tempo reale sin dalla fase di produzione, permette un controllo a lungo termine, con la possibilità di predirne la performance, la durabilità e la vita utile, nonché l’attuazione di sofisticate strategie di manutenzione predittiva per garantire la qualità e l’affidabilità del componente nel tempo. Questo approccio non solo soddisfa le esigenze attuali, ma prepara anche il settore delle costruzioni alle sfide future, guidando la trasformazione verso pratiche edilizie più sostenibili, efficienti e resilienti.
R^2 Slab: innovative building components for technological and energy recovery of existing buildings
Martinelli, Alessandra
2024
Abstract
The current European building stock is aging, requiring significant renovation efforts to enhance energy performance and ensure structural safety. Most existing buildings were built before energy and structural regulations were enforced, thus failing to meet current standards. By 2050, nearly 70% of the current building stock is expected to still be in use, which necessitates a strategic, long-term renovation approach to address future EU challenges. Furthermore, buildings are significant contributors to global energy consumption and carbon emissions, accounting for approximately 40% of the world’s energy demand and 36% of CO2 emissions. This highlights the urgent need for a comprehensive renovation strategy to reduce energy use and mitigate environmental impact. European policymakers have acknowledged the potential energy savings through the renovating existing building stocks, empha-sizing the need for a sustainable, integrated approach to energy and structural build-ing design, as outlined in the Energy Performance of Buildings Directives (EPBD). To address these challenges, the construction sector must undergo transformation and adaptation. The European Construction Sector Observatory (ECSO) underlines signif-icant changes in production processes and sustainable growth models, driven by policies and market demand responding to megatrends like digitalization, climate change, and the circular economy. However, the complexity and cost of renovations are considerable, as they involve the integration of several components and consid-erations, prompting the exploration of industrialized solutions. Prefabrication, an al-ternative to conventional construction, offers advantages such as enhanced product quality, reduced construction time and costs, improved environmental performance, and aesthetic integrity. However, a holistic approach considering energy, sustainabil-ity, resource efficiency, circular economy principles, and affordability is essential for effective building renovation, emphasizing interventions to solve structural issues and improve energy performance throughout the whole lifecycle. In line with these considerations, the present doctoral research focuses on designing and industrially producing a modular prefabricated load-bearing and self-supporting building com-ponent for floors, so called R2 Slab. The component combines reinforced concrete and Sintered Expanded Polystyrene (EPS) for technological and energy recovery of existing residential buildings. The innovative slab was designed to be integrated into masonry and reinforced concrete-framed structures, the most common existing buildings typologies in Italian territory. The design incorporates recycled materials to support circular economy principles and construction sustainability: a novel lost-formwork made from recycled EPS, mechanically and thermally optimised, was de-veloped and tested to create an insulating material that meets sustainable regulatory requirements (Minimum Environmetal Criteria - Criteri Ambientali Minimi). Extensive numerical analyses using finite element models were conducted to understand and enhance the structural, thermal, and acoustic properties of the component, leading to technical improvements. Prototyping has confirmed the feasibility of the design and production, with installation tests yielding positive results, validating the installa-tion procedure. To further validate the component's features, field tests were con-ducted to confirm the performance established through numerical analysis. Addi-tionally, advancements in sensor technology and digital tools, such as Digital Twin and Industry 4.0 innovations, have led to proof of concept related to the integration into the prefabricated component of monitoring sensors connected to a data-receiving platform through the Internet of Things (IoT) technology, creating a smart component capable of real-time monitoring from production through its operational lifecycle. The IoT monitoring system allows for long-term control and the ability to predict the component's performance, durability, and service life. This capability en-ables sophisticated predictive maintenance strategies to ensure the quality and relia-bility of the component over time. This approach not only meets the current needs but also prepares the construction sector for future challenges, driving the transfor-mation towards more sustainable, efficient, and resilient building practices.File | Dimensione | Formato | |
---|---|---|---|
36 ciclo MARTINELLI Alessandra.pdf
embargo fino al 31/07/2025
Dimensione
6.46 MB
Formato
Adobe PDF
|
6.46 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/161704
URN:NBN:IT:POLIBA-161704