Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumour of the central nervous system (CNS). It accounts for 49.1% of all primary malignant brain tumours. GBM is characterized by high invasiveness, proliferation, cellular and metabolic heterogeneity, development of resistance and recurrence. These features make GBM one of the hardest to treat type of tumours. Despite the advances of modern therapeutic approaches, no effective treatment has been developed yet. Indeed, the established protocol based on surgical resection, radiotherapy, and adjunct chemotherapy by temozolomide is the only available treatment. In the past, new metal-based chemotherapeutic drugs have been developed using the ruthenium atom as a core, as an alternative to the already existing platinum-based therapies. They have been extensively studied and three ruthenium-based compounds are currently under clinical trial evaluation. In light of this, we wanted to test the feasibility of two newly synthesised ruthenium-based compounds, compound 4 (#4) and compound 10 (#10), studying their effects in vitro using U87, a commercial cell line of human glioblastoma. Evaluating the effects of #4 and #10 on cell proliferation, cell cycle, induction of deoxyribonucleic acid (DNA) damage and senescence, we found that both complexes were able to induce senescence in U87 and alter cell progression, effectively stopping cells in G0/G1 phase. Moreover, we discovered that the compounds lowered cell viability by increasing cell death induction. Investigating on the mechanism of cell death induction, we excluded the involvement of apoptosis and necroptosis and, we found a clue on two possible targets: the lysosome and the mitochondria. In particular, we detected alterations on the lysosomal membrane permeability and disturbances in the generation of reactive oxygen species into mitochondria. More in detail, we detected alterations in the lysosomal membrane permeability, suggesting a role in the mechanism of the observed cell death. Moreover, we found that the ruthenium-based compounds altered the mitochondrial membrane potential and, together with the superoxide production, hindered the overall Adenosine triphosphate (ATP) production. Combining these results altogether, we proved that the mechanism of cell death induction by #4 and #10 was related to a reactive oxygen species mediated necrosis. To support this, we used N-Acetyl Cysteine (NAC), a powerful antioxidant, against the ruthenium-based compounds, uncovering a protective effect which recovered cell viability and ATP production and, to a limited extent, the superoxide anion production. Our results shed light on the mechanisms of action of ruthenium-based compounds, showing that the mitochondrial district was their primary target. Subsequently, cell death occurred as a result of mitochondrial functionality disruptions. Considering the limited availability of current treatments, ruthenium-based drugs represent a promising solution worth further preclinical and clinical investigations.
Il glioblastoma multiforme (GBM) è il tumore maligno primario più aggressivo del sistema nervoso centrale (SNC). Rappresenta il 49,1% di tutti i tumori cerebrali maligni primari. Il GBM è caratterizzato da elevata invasività, proliferazione, eterogeneità cellulare e metabolica, sviluppo di resistenza e recidiva. Queste caratteristiche rendono il GBM uno dei tumori più difficili da trattare. Nonostante i progressi dei moderni approcci terapeutici, non è stato ancora sviluppato alcun trattamento efficace. Infatti, il protocollo stabilito basato su resezione chirurgica, radioterapia e chemioterapia con temozolomide è l’unico trattamento disponibile. In passato sono stati sviluppati nuovi farmaci chemioterapici a base di metalli utilizzando il rutenio come nucleo, in alternativa alle già esistenti terapie a base di platino. Sono stati ampiamente studiati e tre composti a base di rutenio sono attualmente in fase di sperimentazione clinica. Alla luce di ciò, abbiamo testato l'efficacia di due composti a base di rutenio di nuova sintesi, il composto 4 (#4) e il composto 10 (#10), studiandone gli effetti in vitro utilizzando le U87, una linea cellulare commerciale di glioblastoma umano. Valutando gli effetti del #4 e #10 sulla proliferazione cellulare, sul ciclo cellulare, sull'induzione del danno al DNA e sulla senescenza, abbiamo scoperto che entrambi i complessi erano in grado di indurre la senescenza nelle U87 e alterare la proliferazione cellulare, arrestando efficacemente le cellule in fase G0/G1. Inoltre, abbiamo scoperto che i composti riducevano la vitalità cellulare aumentando la morte cellulare. Indagando sul meccanismo di induzione della morte cellulare, abbiamo escluso il coinvolgimento di apoptosi e necroptosi e abbiamo trovato un indizio su due possibili bersagli: il lisosoma e i mitocondri. In particolare, abbiamo rilevato alterazioni sulla permeabilità della membrana lisosomiale e inducevano la generazione di specie reattive dell'ossigeno nei mitocondri. Più in dettaglio, abbiamo rilevato le alterazioni nella permeabilità della membrana lisosomiale, suggerendo un ruolo nel meccanismo della morte cellulare osservata. Inoltre, abbiamo scoperto che i composti a base di rutenio alteravano il potenziale della membrana mitocondriale e, insieme alla produzione di superossido, ostacolavano la produzione complessiva di ATP. Combinando insieme questi risultati, abbiamo dimostrato che il meccanismo di induzione della morte cellulare da parte del #4 e del #10 era correlato a una necrosi mediata da specie reattive dell'ossigeno. A supporto di ciò, abbiamo utilizzato N-Acetil Cisteina, un potente antiossidante, contro i composti a base di rutenio, rivelando un effetto protettivo che ha ripristinato la vitalità cellulare e la produzione di ATP e, in misura limitata, ha ridotto la produzione di anione superossido. I nostri risultati hanno fatto luce sui meccanismi d’azione dei composti a base di rutenio, dimostrando che il distretto mitocondriale era il loro bersaglio primario. La conseguenza di questa limitata funzionalità mitocondriale è la morte cellulare. Considerando la disponibilità limitata dei trattamenti attuali, i farmaci a base di rutenio rappresentano una soluzione promettente che merita ulteriori indagini precliniche e cliniche.
Esplorazione dell'attività antitumorale dei composti a base di rutenio nel glioma ad alto grado di malignità
DEL MESTRE, PIERFRANCESCO
2024
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumour of the central nervous system (CNS). It accounts for 49.1% of all primary malignant brain tumours. GBM is characterized by high invasiveness, proliferation, cellular and metabolic heterogeneity, development of resistance and recurrence. These features make GBM one of the hardest to treat type of tumours. Despite the advances of modern therapeutic approaches, no effective treatment has been developed yet. Indeed, the established protocol based on surgical resection, radiotherapy, and adjunct chemotherapy by temozolomide is the only available treatment. In the past, new metal-based chemotherapeutic drugs have been developed using the ruthenium atom as a core, as an alternative to the already existing platinum-based therapies. They have been extensively studied and three ruthenium-based compounds are currently under clinical trial evaluation. In light of this, we wanted to test the feasibility of two newly synthesised ruthenium-based compounds, compound 4 (#4) and compound 10 (#10), studying their effects in vitro using U87, a commercial cell line of human glioblastoma. Evaluating the effects of #4 and #10 on cell proliferation, cell cycle, induction of deoxyribonucleic acid (DNA) damage and senescence, we found that both complexes were able to induce senescence in U87 and alter cell progression, effectively stopping cells in G0/G1 phase. Moreover, we discovered that the compounds lowered cell viability by increasing cell death induction. Investigating on the mechanism of cell death induction, we excluded the involvement of apoptosis and necroptosis and, we found a clue on two possible targets: the lysosome and the mitochondria. In particular, we detected alterations on the lysosomal membrane permeability and disturbances in the generation of reactive oxygen species into mitochondria. More in detail, we detected alterations in the lysosomal membrane permeability, suggesting a role in the mechanism of the observed cell death. Moreover, we found that the ruthenium-based compounds altered the mitochondrial membrane potential and, together with the superoxide production, hindered the overall Adenosine triphosphate (ATP) production. Combining these results altogether, we proved that the mechanism of cell death induction by #4 and #10 was related to a reactive oxygen species mediated necrosis. To support this, we used N-Acetyl Cysteine (NAC), a powerful antioxidant, against the ruthenium-based compounds, uncovering a protective effect which recovered cell viability and ATP production and, to a limited extent, the superoxide anion production. Our results shed light on the mechanisms of action of ruthenium-based compounds, showing that the mitochondrial district was their primary target. Subsequently, cell death occurred as a result of mitochondrial functionality disruptions. Considering the limited availability of current treatments, ruthenium-based drugs represent a promising solution worth further preclinical and clinical investigations.File | Dimensione | Formato | |
---|---|---|---|
Del Mestre PhD dissertation.pdf
embargo fino al 11/01/2026
Dimensione
5.81 MB
Formato
Adobe PDF
|
5.81 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/164626
URN:NBN:IT:UNIUD-164626