Assistive technology (AT) includes devices and services conceived and designed for persons with disabilities, aging populations, and people with non-communicable diseases. The key purpose of assistive devices is to provide users with the opportunity to improve their functional limitations and increase their independence and well-being, thereby optimising their participation in education, the labour market and social life (WHO and UNICEF, 2022). This research focuses on the adoption and acceptance of AT physical devices used by people with disabilities and impairments. World Health Organization (Ibid.) calculates that currently worldwide 2.5 billion people need one or multiple assistive devices. Despite hundreds of AT products on the market and the many invested stakeholders, the global adoption of AT is relatively low, particularly in low- and middle-income countries. Access to AT has been confirmed as critical due to several barriers such as availability, affordability, quality of AT and lack of public awareness and information. Although the accessibility of AT is greater in high-income countries than in lower-middle-income countries, a large number of AT users may be dissatisfied with their AT devices and services, leading to infrequent use or abandonment of AT (Phillips and Zhao, 1993). This research work investigates AT devices from a macro and a micro perspective. At the macro-level, variables and factors influencing AT adoption and implementation will be analysed using an Agent-based model (ABM) simulation in Netlogo software (Gilbert and Troitzsch, 2005; Grimm and Railsback, 2005; Bennato,2015). Using ABM, the research will simulate the temporal diffusion patterns of AT over 15 years (from December 2021 to December 2036). The Adoption of Assistive Technology (AOAT) model will apply a multi-stage approach, based on the sociological theory of diffusion of innovation (DOI) by Rogers (1983; 1995; 2003) and on aggregated quantitative survey data from the Global Report on Assistive Technology (WHO and UNICEF, 2022). We will demonstrate the ABM applicability by exploring the evolution of AT adoption and implementation under various scenarios, simulating three countries with different Human Development Index (HDI) scores, respectively Tajikistan, Malawi and Sweden. At the micro level, users’ characteristics, perceptions, behaviours patterns and family and caregivers’ dynamics related to the use of four categories of AT devices are explored by analysing reviews on Amazon.com (Berry et al., 2015). The categories of AT have been selected based on four different disabilities and impairments: mobility, vision, hearing and cognition. We combine quantitative content analysis, i.e., Lexical Correspondence Analysis (LCA) (Benzécri, 1992), using T-LAB software and manual digital content analysis to explore Amazon product-related reviews. Thus, on the one hand, the research will identify the main parameters that influence AT adoption and implementation. The macro-level study, based on the Diffusion of Innovations (DOI) theoretical framework (Rogers, 1983; 1995; 2003), will reveal the central role of innovators and health influencers in promoting assistive technology (AT) adoption, emphasising the importance of small-world social networks. Factors such as socio-economic status, technology costs and government incentives influence AT purchase, while perceived technological characteristics influence sustained use. The study will model two primary scenarios: the 'wait-and-respond' scenario, which reflects current conditions in different countries, and the 'optimistic champion' scenario, which envisages more favourable conditions. These scenarios aim to illustrate how different strategies in terms of policy frameworks, influencer involvement and technology attributes such as price and quality can significantly influence the speed and extent of assistive technology (AT) adoption and use by individuals. In particular, the optimistic scenario will illustrate the possibility of rapid and widespread adoption without risks of abandonment under favourable conditions, such as the existence of robust influencer networks and supportive policies. On the other hand, micro-level research on users' reviews on Amazon.com is based on the Social Construction of Technology (SCOT) (Pinch e Bijker, 1984; Bijker, 1996), Domestication Theory (Silverstone, Hirsch and Morley, 1992; Silverstone and Hirsch, 1994) and other user-oriented approaches (Cowan, 1987; Woolgar, 1990; Akrich, 1992; Mackay et al., 2000). LCA will highlight gender and age differences in assistive technology (AT) users, with family members playing a key role in the adoption and acceptance of AT, particularly among older users and children. LCA will also highlight generational changes in AT adoption practices on e-commerce platforms such as Amazon. In addition, the LCA will provide insights into the institutionalisation process of the technology (Silverstone, Hirsch and Morley, 1992; Silverstone and Hirsch, 1992), particularly its use within and outside the home. Moreover, manual content analysis of user reviews will highlight elements of divergence and convergence between users' perceptions of different AT products and various patterns of user behaviour. The restorative nature of AT, users' emotional attachment to the technical artefact, the positive impact of AT on daily life and well-being are recurring themes in users' common perceptions, with users concerned about durability and the presence of robotic elements in AT devices. Furthermore, the content analysis will indicate four main patterns of user behaviour, represented by two main strategies, personalisation and abandonment, and two types of users, referred to as 'guide users' and 'ordinary users'. In this sense, the micro-level part of our research will also uncover the complex relationships between users, family members and manufacturers and shed light on how users position themselves within the technology construction process. In summary, the thesis will offer a comprehensive understanding of the macro and micro dynamics that influence AT adoption and implementation, as well as providing insights into user experiences and characteristics, and highlighting potential areas for design improvement.

La tecnologia assistiva (AT) include dispositivi e servizi concepiti e progettati per persone con disabilità, popolazioni invecchiate e persone affette da malattie non trasmissibili. Lo scopo principale dei dispositivi assistivi è fornire agli utenti l'opportunità di migliorare le loro limitazioni funzionali e aumentare la loro indipendenza e benessere, ottimizzando così la loro partecipazione nell'istruzione, nel mercato del lavoro e nella vita sociale (OMS e UNICEF, 2022). Questa ricerca si concentra sull'adozione e sull'accettazione dei dispositivi fisici AT utilizzati da persone con disabilità e limitazioni. L'Organizzazione Mondiale della Sanità (Ibidem) stima che attualmente nel mondo 2,5 miliardi di persone necessitino di uno o più dispositivi assistivi. Nonostante siano presenti centinaia di prodotti AT sul mercato e numerosi stakeholder coinvolti, l'adozione globale di AT è relativamente bassa, specialmente nei paesi a basso e medio reddito. L'accesso a AT è stato confermato come critico a causa di diversi ostacoli come disponibilità, accessibilità economica, qualità di AT e mancanza di consapevolezza pubblica e informazioni. Sebbene l'accessibilità di AT sia maggiore nei paesi ad alto reddito rispetto a quelli a reddito medio-basso, un gran numero di utenti AT potrebbe essere insoddisfatto dei propri dispositivi e servizi, portando a un uso sporadico o all'abbandono di AT (Phillips e Zhao, 1993). Questo lavoro di ricerca indaga i dispositivi AT da una prospettiva macro e micro. A livello macro, verranno analizzate variabili e fattori che influenzano l'adozione e l'implementazione di AT utilizzando una simulazione basata su un modello ad agenti (ABM) nel software Netlogo (Gilbert e Troitzsch, 2005; Grimm e Railsback, 2005; Bennato, 2015). Utilizzando l'ABM, la ricerca simulerà i modelli di diffusione temporale di AT nel corso di 15 anni (da dicembre 2021 a dicembre 2036). Il modello di Adozione della Tecnologia Assistiva (AOAT) applicherà un approccio multistadio, basato sulla teoria sociologica della diffusione dell'innovazione (DOI) di Rogers (1983; 1995; 2003) e su dati aggregati di indagini quantitative dal Global Report on Assistive Technology (OMS e UNICEF, 2022). Dimostreremo l'applicabilità dell'ABM esplorando l'evoluzione dell'adozione e dell'implementazione di AT in vari scenari, simulando tre paesi con diversi punteggi di Indice di Sviluppo Umano (HDI), rispettivamente Tagikistan, Malawi e Svezia. A livello micro, caratteristiche degli utenti, percezioni, comportamenti e dinamiche familiari e dei caregiver legate all'uso di quattro categorie di dispositivi AT vengono esplorate analizzando le recensioni su Amazon.com (Berry et al., 2015). Le categorie di AT sono state selezionate in base a quattro diverse disabilità e limitazioni: mobilità, vista, udito e cognizione. Un'analisi quantitativa del contenuto, ovvero Analisi Lessicale di Corrispondenza (LCA) (Benzécri, 1992), utilizzando il software T-LAB e un'analisi manuale del contenuto digitale, vengono combinate per esplorare le recensioni di prodotti su Amazon. Pertanto, da un lato, la ricerca identificherà i principali parametri che influenzano l'adozione e l'implementazione di AT. Lo studio a livello macro, basato sul quadro teorico della Diffusione delle Innovazioni (DOI) (Rogers, 1983; 1995; 2003), rivelerà il ruolo centrale degli innovatori e degli influencer sanitari nella promozione dell'adozione della tecnologia assistiva (AT), sottolineando l'importanza delle reti sociali piccole. Fattori come lo stato socioeconomico, i costi della tecnologia e gli incentivi governativi influenzano l'acquisto di AT, mentre le caratteristiche tecnologiche percepite influenzano l'uso sostenuto. Lo studio modellerà due scenari principali: lo scenario 'attendere e rispondere', che riflette le condizioni attuali in diversi paesi, e lo scenario 'campione ottimista', che immagina condizioni più favorevoli. Questi scenari mirano a illustrare come diverse strategie in termini di quadri normativi, coinvolgimento degli influencer e attributi tecnologici come prezzo e qualità possano influenzare significativamente la velocità e l'estensione dell'adozione e dell'uso di AT da parte degli individui. In particolare, lo scenario ottimista illustrerà la possibilità di un'adozione rapida e diffusa senza rischi di abbandono in condizioni favorevoli, come l'esistenza di reti di influencer robuste e politiche di supporto. D'altro canto, la ricerca a livello micro sulle recensioni degli utenti su Amazon.com si basa sulla Teoria Sociale della Costruzione della Tecnologia (SCOT) (Pinch e Bijker, 1984; Bijker, 1996), sulla Teoria della Domesticazione (Silverstone, Hirsch e Morley, 1992; Silverstone e Hirsch, 1994) e su altri approcci orientati agli utenti (Cowan, 1987; Woolgar, 1990; Akrich, 1992; Mackay et al., 2000). L'Analisi Lessicale di Corrispondenza (LCA) metterà in evidenza le differenze di genere e età negli utenti di tecnologia assistiva (AT), con i membri della famiglia che svolgono un ruolo chiave nell'adozione e nell'accettazione di AT, in particolare tra gli utenti più anziani e i bambini. La LCA metterà anche in luce cambiamenti generazionali nelle pratiche di adozione di AT su piattaforme di e-commerce come Amazon. Inoltre, la LCA offrirà approfondimenti nel processo di istituzionalizzazione della tecnologia (Silverstone, Hirsch e Morley, 1992; Silverstone e Hirsch, 1992), in particolare del suo utilizzo all'interno e all'esterno della casa. Inoltre, l'analisi manuale del contenuto delle recensioni degli utenti metterà in evidenza elementi di divergenza e convergenza tra le percezioni degli utenti di diversi prodotti AT e vari modelli di comportamento degli utenti. La natura riparatrice di AT, l'attaccamento emotivo dell'utente all'artefatto tecnico, l'impatto positivo di AT sulla vita quotidiana e sul benessere sono temi ricorrenti nelle percezioni comuni degli utenti, con preoccupazioni riguardo alla durabilità e alla presenza di elementi robotici nei dispositivi AT. Inoltre, la content analysis indicherà quattro principali modelli di comportamento degli utenti, rappresentati da due strategie principali, personalizzazione e abbandono, e due tipi di utenti, definiti come 'utenti guida' e 'utenti ordinari'. In questo senso, la parte a livello micro della nostra ricerca scoprirà anche le complesse relazioni tra utenti, membri della famiglia e produttori e farà luce su come gli utenti si posizionano nel processo di costruzione della tecnologia. In sintesi, la tesi offrirà una comprensione completa delle dinamiche macro e micro che influenzano l'adozione e l'implementazione di AT, fornendo anche approfondimenti sulle esperienze e caratteristiche degli utenti e evidenziando aree potenziali per miglioramenti progettuali.

Adozione e accettazione delle tecnologie assistive tra le persone con disabilità

RUMORE, BIANCA
2024

Abstract

Assistive technology (AT) includes devices and services conceived and designed for persons with disabilities, aging populations, and people with non-communicable diseases. The key purpose of assistive devices is to provide users with the opportunity to improve their functional limitations and increase their independence and well-being, thereby optimising their participation in education, the labour market and social life (WHO and UNICEF, 2022). This research focuses on the adoption and acceptance of AT physical devices used by people with disabilities and impairments. World Health Organization (Ibid.) calculates that currently worldwide 2.5 billion people need one or multiple assistive devices. Despite hundreds of AT products on the market and the many invested stakeholders, the global adoption of AT is relatively low, particularly in low- and middle-income countries. Access to AT has been confirmed as critical due to several barriers such as availability, affordability, quality of AT and lack of public awareness and information. Although the accessibility of AT is greater in high-income countries than in lower-middle-income countries, a large number of AT users may be dissatisfied with their AT devices and services, leading to infrequent use or abandonment of AT (Phillips and Zhao, 1993). This research work investigates AT devices from a macro and a micro perspective. At the macro-level, variables and factors influencing AT adoption and implementation will be analysed using an Agent-based model (ABM) simulation in Netlogo software (Gilbert and Troitzsch, 2005; Grimm and Railsback, 2005; Bennato,2015). Using ABM, the research will simulate the temporal diffusion patterns of AT over 15 years (from December 2021 to December 2036). The Adoption of Assistive Technology (AOAT) model will apply a multi-stage approach, based on the sociological theory of diffusion of innovation (DOI) by Rogers (1983; 1995; 2003) and on aggregated quantitative survey data from the Global Report on Assistive Technology (WHO and UNICEF, 2022). We will demonstrate the ABM applicability by exploring the evolution of AT adoption and implementation under various scenarios, simulating three countries with different Human Development Index (HDI) scores, respectively Tajikistan, Malawi and Sweden. At the micro level, users’ characteristics, perceptions, behaviours patterns and family and caregivers’ dynamics related to the use of four categories of AT devices are explored by analysing reviews on Amazon.com (Berry et al., 2015). The categories of AT have been selected based on four different disabilities and impairments: mobility, vision, hearing and cognition. We combine quantitative content analysis, i.e., Lexical Correspondence Analysis (LCA) (Benzécri, 1992), using T-LAB software and manual digital content analysis to explore Amazon product-related reviews. Thus, on the one hand, the research will identify the main parameters that influence AT adoption and implementation. The macro-level study, based on the Diffusion of Innovations (DOI) theoretical framework (Rogers, 1983; 1995; 2003), will reveal the central role of innovators and health influencers in promoting assistive technology (AT) adoption, emphasising the importance of small-world social networks. Factors such as socio-economic status, technology costs and government incentives influence AT purchase, while perceived technological characteristics influence sustained use. The study will model two primary scenarios: the 'wait-and-respond' scenario, which reflects current conditions in different countries, and the 'optimistic champion' scenario, which envisages more favourable conditions. These scenarios aim to illustrate how different strategies in terms of policy frameworks, influencer involvement and technology attributes such as price and quality can significantly influence the speed and extent of assistive technology (AT) adoption and use by individuals. In particular, the optimistic scenario will illustrate the possibility of rapid and widespread adoption without risks of abandonment under favourable conditions, such as the existence of robust influencer networks and supportive policies. On the other hand, micro-level research on users' reviews on Amazon.com is based on the Social Construction of Technology (SCOT) (Pinch e Bijker, 1984; Bijker, 1996), Domestication Theory (Silverstone, Hirsch and Morley, 1992; Silverstone and Hirsch, 1994) and other user-oriented approaches (Cowan, 1987; Woolgar, 1990; Akrich, 1992; Mackay et al., 2000). LCA will highlight gender and age differences in assistive technology (AT) users, with family members playing a key role in the adoption and acceptance of AT, particularly among older users and children. LCA will also highlight generational changes in AT adoption practices on e-commerce platforms such as Amazon. In addition, the LCA will provide insights into the institutionalisation process of the technology (Silverstone, Hirsch and Morley, 1992; Silverstone and Hirsch, 1992), particularly its use within and outside the home. Moreover, manual content analysis of user reviews will highlight elements of divergence and convergence between users' perceptions of different AT products and various patterns of user behaviour. The restorative nature of AT, users' emotional attachment to the technical artefact, the positive impact of AT on daily life and well-being are recurring themes in users' common perceptions, with users concerned about durability and the presence of robotic elements in AT devices. Furthermore, the content analysis will indicate four main patterns of user behaviour, represented by two main strategies, personalisation and abandonment, and two types of users, referred to as 'guide users' and 'ordinary users'. In this sense, the micro-level part of our research will also uncover the complex relationships between users, family members and manufacturers and shed light on how users position themselves within the technology construction process. In summary, the thesis will offer a comprehensive understanding of the macro and micro dynamics that influence AT adoption and implementation, as well as providing insights into user experiences and characteristics, and highlighting potential areas for design improvement.
5-apr-2024
Italiano
La tecnologia assistiva (AT) include dispositivi e servizi concepiti e progettati per persone con disabilità, popolazioni invecchiate e persone affette da malattie non trasmissibili. Lo scopo principale dei dispositivi assistivi è fornire agli utenti l'opportunità di migliorare le loro limitazioni funzionali e aumentare la loro indipendenza e benessere, ottimizzando così la loro partecipazione nell'istruzione, nel mercato del lavoro e nella vita sociale (OMS e UNICEF, 2022). Questa ricerca si concentra sull'adozione e sull'accettazione dei dispositivi fisici AT utilizzati da persone con disabilità e limitazioni. L'Organizzazione Mondiale della Sanità (Ibidem) stima che attualmente nel mondo 2,5 miliardi di persone necessitino di uno o più dispositivi assistivi. Nonostante siano presenti centinaia di prodotti AT sul mercato e numerosi stakeholder coinvolti, l'adozione globale di AT è relativamente bassa, specialmente nei paesi a basso e medio reddito. L'accesso a AT è stato confermato come critico a causa di diversi ostacoli come disponibilità, accessibilità economica, qualità di AT e mancanza di consapevolezza pubblica e informazioni. Sebbene l'accessibilità di AT sia maggiore nei paesi ad alto reddito rispetto a quelli a reddito medio-basso, un gran numero di utenti AT potrebbe essere insoddisfatto dei propri dispositivi e servizi, portando a un uso sporadico o all'abbandono di AT (Phillips e Zhao, 1993). Questo lavoro di ricerca indaga i dispositivi AT da una prospettiva macro e micro. A livello macro, verranno analizzate variabili e fattori che influenzano l'adozione e l'implementazione di AT utilizzando una simulazione basata su un modello ad agenti (ABM) nel software Netlogo (Gilbert e Troitzsch, 2005; Grimm e Railsback, 2005; Bennato, 2015). Utilizzando l'ABM, la ricerca simulerà i modelli di diffusione temporale di AT nel corso di 15 anni (da dicembre 2021 a dicembre 2036). Il modello di Adozione della Tecnologia Assistiva (AOAT) applicherà un approccio multistadio, basato sulla teoria sociologica della diffusione dell'innovazione (DOI) di Rogers (1983; 1995; 2003) e su dati aggregati di indagini quantitative dal Global Report on Assistive Technology (OMS e UNICEF, 2022). Dimostreremo l'applicabilità dell'ABM esplorando l'evoluzione dell'adozione e dell'implementazione di AT in vari scenari, simulando tre paesi con diversi punteggi di Indice di Sviluppo Umano (HDI), rispettivamente Tagikistan, Malawi e Svezia. A livello micro, caratteristiche degli utenti, percezioni, comportamenti e dinamiche familiari e dei caregiver legate all'uso di quattro categorie di dispositivi AT vengono esplorate analizzando le recensioni su Amazon.com (Berry et al., 2015). Le categorie di AT sono state selezionate in base a quattro diverse disabilità e limitazioni: mobilità, vista, udito e cognizione. Un'analisi quantitativa del contenuto, ovvero Analisi Lessicale di Corrispondenza (LCA) (Benzécri, 1992), utilizzando il software T-LAB e un'analisi manuale del contenuto digitale, vengono combinate per esplorare le recensioni di prodotti su Amazon. Pertanto, da un lato, la ricerca identificherà i principali parametri che influenzano l'adozione e l'implementazione di AT. Lo studio a livello macro, basato sul quadro teorico della Diffusione delle Innovazioni (DOI) (Rogers, 1983; 1995; 2003), rivelerà il ruolo centrale degli innovatori e degli influencer sanitari nella promozione dell'adozione della tecnologia assistiva (AT), sottolineando l'importanza delle reti sociali piccole. Fattori come lo stato socioeconomico, i costi della tecnologia e gli incentivi governativi influenzano l'acquisto di AT, mentre le caratteristiche tecnologiche percepite influenzano l'uso sostenuto. Lo studio modellerà due scenari principali: lo scenario 'attendere e rispondere', che riflette le condizioni attuali in diversi paesi, e lo scenario 'campione ottimista', che immagina condizioni più favorevoli. Questi scenari mirano a illustrare come diverse strategie in termini di quadri normativi, coinvolgimento degli influencer e attributi tecnologici come prezzo e qualità possano influenzare significativamente la velocità e l'estensione dell'adozione e dell'uso di AT da parte degli individui. In particolare, lo scenario ottimista illustrerà la possibilità di un'adozione rapida e diffusa senza rischi di abbandono in condizioni favorevoli, come l'esistenza di reti di influencer robuste e politiche di supporto. D'altro canto, la ricerca a livello micro sulle recensioni degli utenti su Amazon.com si basa sulla Teoria Sociale della Costruzione della Tecnologia (SCOT) (Pinch e Bijker, 1984; Bijker, 1996), sulla Teoria della Domesticazione (Silverstone, Hirsch e Morley, 1992; Silverstone e Hirsch, 1994) e su altri approcci orientati agli utenti (Cowan, 1987; Woolgar, 1990; Akrich, 1992; Mackay et al., 2000). L'Analisi Lessicale di Corrispondenza (LCA) metterà in evidenza le differenze di genere e età negli utenti di tecnologia assistiva (AT), con i membri della famiglia che svolgono un ruolo chiave nell'adozione e nell'accettazione di AT, in particolare tra gli utenti più anziani e i bambini. La LCA metterà anche in luce cambiamenti generazionali nelle pratiche di adozione di AT su piattaforme di e-commerce come Amazon. Inoltre, la LCA offrirà approfondimenti nel processo di istituzionalizzazione della tecnologia (Silverstone, Hirsch e Morley, 1992; Silverstone e Hirsch, 1992), in particolare del suo utilizzo all'interno e all'esterno della casa. Inoltre, l'analisi manuale del contenuto delle recensioni degli utenti metterà in evidenza elementi di divergenza e convergenza tra le percezioni degli utenti di diversi prodotti AT e vari modelli di comportamento degli utenti. La natura riparatrice di AT, l'attaccamento emotivo dell'utente all'artefatto tecnico, l'impatto positivo di AT sulla vita quotidiana e sul benessere sono temi ricorrenti nelle percezioni comuni degli utenti, con preoccupazioni riguardo alla durabilità e alla presenza di elementi robotici nei dispositivi AT. Inoltre, la content analysis indicherà quattro principali modelli di comportamento degli utenti, rappresentati da due strategie principali, personalizzazione e abbandono, e due tipi di utenti, definiti come 'utenti guida' e 'utenti ordinari'. In questo senso, la parte a livello micro della nostra ricerca scoprirà anche le complesse relazioni tra utenti, membri della famiglia e produttori e farà luce su come gli utenti si posizionano nel processo di costruzione della tecnologia. In sintesi, la tesi offrirà una comprensione completa delle dinamiche macro e micro che influenzano l'adozione e l'implementazione di AT, fornendo anche approfondimenti sulle esperienze e caratteristiche degli utenti e evidenziando aree potenziali per miglioramenti progettuali.
RAPISARDA, Andrea
Università degli studi di Catania
Catania
File in questo prodotto:
File Dimensione Formato  
Rumore Bianca 2024_PhD THESIS.pdf

embargo fino al 05/04/2025

Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/165664
Il codice NBN di questa tesi è URN:NBN:IT:UNICT-165664