This dissertation deals with the mechanical and seismic mitigation properties of gravel-rubber mixtures (GRMs) as a Geotechnical Seismic Isolation (GSI) system. Seismic hazard is recognized as one of the main causes of structures and infrastructure failure worldwide. The damage caused by past and recent earthquakes demonstrates the necessity to promote specific actions to mitigate the seismic risk for buildings and infrastructures, highlighting the decisive role of the soil filter effect and soil-structure interaction in evaluating structural seismic risk. Moreover, in recent years, a need to safeguard the ecosystem has encouraged researchers to find new solutions that combine seismic risk mitigation and ecosystem protection. In this framework, GSI systems have been proposed as a new mitigation technique based on improving soil behaviour using natural or modified geomaterials. Among the geomaterials proposed as GSI systems, soil-rubber mixtures (SoRMs) have emerged as a valuable and eco-sustainable technique for protecting structures in earthquake-prone areas. The main idea is to improve the soil immediately underneath the foundations using SoRMs so that seismic energy will be partially dissipated within SoRMs before being transmitted to the structures. SoRMs are generally obtained by blending sand or gravel as the soil portion and granulated tyre rubber as the synthetic portion. Rubber grains for the mixtures are manufactured from End-Of-Life Tyres (ELTs), the disposal of which has become a severe environmental problem worldwide. In literature, many studies have focused on the mechanical properties of sand-rubber mixtures (SRMs) investigated through static and dynamic laboratory tests. A very limited number of studies have analysed the behaviour of gravel-rubber mixtures (GRMs). This dissertation presents new laboratory tests on GRMs using typical angular poorly-graded gravels from the central part of Sicily (Italy), mixed with rubber particles from ELTs. The tests were performed in a Sicilian laboratory; they aim to cover the gap in literature regarding gravel-rubber mixtures and analyse and promote mixtures that consider the availability and cost efficiency of the materials based on the geographical context. Then, innovative and more-realistic GRMs consisting of well-graded gravel as the soil portion and granulated rubber from ELTs as the synthetic portion, were evaluated. The behaviour of these well-graded gravel-rubber mixtures was evaluated through extensive laboratory tests that covered the static, dynamic and cyclic fields. The latter laboratory tests were performed in the geotechnical laboratory of the University of Canterbury (Christchurch, New Zealand). A further fundamental step is the choice of an adequate constitutive model capable of reproducing the non-linear behaviour of GRMs. This choice is fundamental for all the FEM studies on which the accuracy of the results depends. In the present work, the Hardening Soil with Small-Strain Stiffness (HS-small) model was identified as a possible constitutive model capable of reproducing the behaviour of GRMs. The effectiveness and limits of the HS-small model were investigated based on the experimental tests by Pasha et al. (2019). To investigate the capability of GRMs as a GSI system, 3D FEM simulations of full-scale experimental tests on a prototype structure isolated by a GRM layer were performed. The results of the 3D FEM non-linear dynamic analyses furnish highlights on the behaviour of the GRMs having different rubber contents (0%, 10% and 30% in weight) in the static and dynamic field. Numerical modelling also makes it possible to evaluate quantities not directly assessed through the experimental tests. The findings provide fruitful insights and operational ideas for designing GRM layers underneath building foundations. Finally, the dynamic interaction between GRMs and buildings was further investigated numerically, analysing the effect of a GRM layer underneath the shallow foundations of a real structure. Parametric analyses were performed varying the seismic motion and the GRM layer thickness. These numerical analyses aim to assess the overall performance of the GRM layer underneath the foundations to mitigate the seismic risk of the structure and to furnish some general information about GRMs as a GSI system.
Questa tesi tratta le proprietà meccaniche e di mitigazione sismica delle miscele ghiaia-gomma (GRM) come sistema di isolamento geotecnico sismico (GSI). La pericolosità sismica è riconosciuta come una delle principali cause di collasso di strutture e infrastrutture in tutto il mondo. I danni causati dai terremoti passati e recenti dimostrano la necessità di promuovere azioni specifiche per mitigare il rischio sismico per edifici e infrastrutture, evidenziando il ruolo decisivo dell’effetto filtro del terreno e dell’interazione terreno-struttura nella valutazione del rischio sismico strutturale. Inoltre, negli ultimi anni, la necessità di salvaguardare l’ecosistema ha spinto i ricercatori a trovare nuove soluzioni che uniscano la mitigazione del rischio sismico e la protezione degli ecosistemi. In questo contesto, i sistemi GSI sono stati proposti come una nuova tecnica di mitigazione basata sul miglioramento del comportamento del terreno utilizzando geomateriali naturali o modificati. Tra i geomateriali proposti come sistemi GSI, le miscele terreno-gomma (SoRM) si sono affermate come una tecnica preziosa ed ecosostenibile per la protezione delle strutture in aree a forte rischio sismico. L'idea principale è quella di migliorare il terreno immediatamente sotto le fondazioni utilizzando le SoRM in modo che l'energia sismica venga parzialmente dissipata all'interno dei SoRM prima di essere trasmessa alle strutture. Le SoRM sono generalmente ottenuti miscelando sabbia o ghiaia come porzione di terreno e gomma granulata derivante da pneumatici come porzione sintetica. I grani di gomma per le miscele sono ricavati da Pneumatici Fuori Uso (PFU), il cui smaltimento è diventato un grave problema ambientale in tutto il mondo. In letteratura, molti studi si sono concentrati sulle proprietà meccaniche delle miscele sabbia-gomma (SRM) indagate attraverso prove di laboratorio statiche e dinamiche. Un numero molto limitato di studi ha analizzato il comportamento delle miscele ghiaia-gomma (GRM). Questa tesi presenta nuovi test di laboratorio sulle GRM utilizzando tipiche ghiaie spigolose e scarsamente granulometriche provenienti dalla parte centrale della Sicilia (Italia), mescolate con particelle di gomma provenienti da PFU. I test sono stati eseguiti in un laboratorio siciliano; essi mirano a colmare il gap presente in letteratura riguardo le miscele ghiaia-gomma e ad analizzare e promuovere miscele che considerino la disponibilità e l’efficienza economica dei materiali in base al contesto geografico. Successivamente sono stati studiati GRM innovative e più realistiche costituite da ghiaia ben gradata come porzione di terreno e gomma granulata da PFU come porzione sintetica. Il comportamento di queste miscele ghiaia-gomma ben gradate è stato valutato attraverso approfonditi test di laboratorio che hanno coperto il comportamento in campo statico, dinamico e ciclico. Questi ultimi test di laboratorio sono stati eseguiti nel laboratorio geotecnico dell'Università di Canterbury (Christchurch, Nuova Zelanda). Un ulteriore passo fondamentale è la scelta di un modello costitutivo adeguato in grado di riprodurre il comportamento non lineare delle GRM. Questa scelta è fondamentale per tutti gli studi FEM da cui dipende l'accuratezza dei risultati. Nel presente lavoro, il modello Hardening Soil with Small-Strain Stiffness (HS-small) è stato identificato come un possibile modello costitutivo in grado di riprodurre il comportamento delle GRM. L'efficacia e i limiti del modello HS-small sono stati studiati sulla base dei test sperimentali di Pasha et al. (2019). Per studiare la capacità delle GRM come sistema GSI, sono state eseguite simulazioni FEM 3D di test sperimentali su scala reale su una struttura prototipo isolata da uno strato di GRM. I risultati delle analisi dinamiche non lineari 3D FEM forniscono evidenze sul comportamento delle GRM a diverso contenuto di gomma (0%, 10% e 30% in peso) in campo statico e dinamico. La modellazione numerica consente di valutare anche grandezze non direttamente valutate attraverso le prove sperimentali. I risultati forniscono spunti interessanti e idee operative per la progettazione degli strati GRM sotto le fondamenta degli edifici. Infine, l'interazione dinamica tra GRM ed edifici è stata ulteriormente studiata numericamente, analizzando l'effetto di uno strato di GRM al di sotto delle fondazioni superficiali di una struttura reale. Sono state eseguite analisi parametriche variando il movimento sismico e lo spessore dello strato di GRM. Queste analisi numeriche mirano a valutare le prestazioni complessive dello strato di GRM sotto le fondazioni per mitigare il rischio sismico della struttura e a fornire alcune informazioni generali sulle GRM come sistema GSI.
Un sistema di isolamento geotecnico sismico ecosostenibile nell'interazione dinamica terreno-struttura
FIAMINGO, ANGELA
2024
Abstract
This dissertation deals with the mechanical and seismic mitigation properties of gravel-rubber mixtures (GRMs) as a Geotechnical Seismic Isolation (GSI) system. Seismic hazard is recognized as one of the main causes of structures and infrastructure failure worldwide. The damage caused by past and recent earthquakes demonstrates the necessity to promote specific actions to mitigate the seismic risk for buildings and infrastructures, highlighting the decisive role of the soil filter effect and soil-structure interaction in evaluating structural seismic risk. Moreover, in recent years, a need to safeguard the ecosystem has encouraged researchers to find new solutions that combine seismic risk mitigation and ecosystem protection. In this framework, GSI systems have been proposed as a new mitigation technique based on improving soil behaviour using natural or modified geomaterials. Among the geomaterials proposed as GSI systems, soil-rubber mixtures (SoRMs) have emerged as a valuable and eco-sustainable technique for protecting structures in earthquake-prone areas. The main idea is to improve the soil immediately underneath the foundations using SoRMs so that seismic energy will be partially dissipated within SoRMs before being transmitted to the structures. SoRMs are generally obtained by blending sand or gravel as the soil portion and granulated tyre rubber as the synthetic portion. Rubber grains for the mixtures are manufactured from End-Of-Life Tyres (ELTs), the disposal of which has become a severe environmental problem worldwide. In literature, many studies have focused on the mechanical properties of sand-rubber mixtures (SRMs) investigated through static and dynamic laboratory tests. A very limited number of studies have analysed the behaviour of gravel-rubber mixtures (GRMs). This dissertation presents new laboratory tests on GRMs using typical angular poorly-graded gravels from the central part of Sicily (Italy), mixed with rubber particles from ELTs. The tests were performed in a Sicilian laboratory; they aim to cover the gap in literature regarding gravel-rubber mixtures and analyse and promote mixtures that consider the availability and cost efficiency of the materials based on the geographical context. Then, innovative and more-realistic GRMs consisting of well-graded gravel as the soil portion and granulated rubber from ELTs as the synthetic portion, were evaluated. The behaviour of these well-graded gravel-rubber mixtures was evaluated through extensive laboratory tests that covered the static, dynamic and cyclic fields. The latter laboratory tests were performed in the geotechnical laboratory of the University of Canterbury (Christchurch, New Zealand). A further fundamental step is the choice of an adequate constitutive model capable of reproducing the non-linear behaviour of GRMs. This choice is fundamental for all the FEM studies on which the accuracy of the results depends. In the present work, the Hardening Soil with Small-Strain Stiffness (HS-small) model was identified as a possible constitutive model capable of reproducing the behaviour of GRMs. The effectiveness and limits of the HS-small model were investigated based on the experimental tests by Pasha et al. (2019). To investigate the capability of GRMs as a GSI system, 3D FEM simulations of full-scale experimental tests on a prototype structure isolated by a GRM layer were performed. The results of the 3D FEM non-linear dynamic analyses furnish highlights on the behaviour of the GRMs having different rubber contents (0%, 10% and 30% in weight) in the static and dynamic field. Numerical modelling also makes it possible to evaluate quantities not directly assessed through the experimental tests. The findings provide fruitful insights and operational ideas for designing GRM layers underneath building foundations. Finally, the dynamic interaction between GRMs and buildings was further investigated numerically, analysing the effect of a GRM layer underneath the shallow foundations of a real structure. Parametric analyses were performed varying the seismic motion and the GRM layer thickness. These numerical analyses aim to assess the overall performance of the GRM layer underneath the foundations to mitigate the seismic risk of the structure and to furnish some general information about GRMs as a GSI system.File | Dimensione | Formato | |
---|---|---|---|
Doctoral Dissertation Angela Fiamino_2024_final.pdf
accesso aperto
Dimensione
33.79 MB
Formato
Adobe PDF
|
33.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/165674
URN:NBN:IT:UNICT-165674