Metallic nanoparticles exhibit normal modes of oscillation of the conduction electrons called Localized Surface Plasmons that couple resonantly with light at visible frequencies. Owing to this resonant coupling, plasmonic nanoparticles offer a strong interaction with light, which is manifested as intense colors of plasmonic colloids and greatly amplifies electric fields in the proximity of the nanoparticles. During my PhD studies, I learned how to prepare colloids of silver nanoparticles and characterize them with various experimental techniques and numerical simulations. Two applications of the nanoparticles in which the strong interaction with light is exploited are presented. The first is Surface Enhanced Raman Scattering (SERS), a sensing application in which the nanoparticles act as a nanoantenna to increase light-matter interaction with target molecules by several orders of magnitude, due to the strong field confinement resulting from the resonance. SERS-based sensors can reach extremely low limits of detection and are a powerful analytical technique. Two types of silver plasmonic colloids with strong SERS activity have been studied in this regard. In the second application the colloidal nanoparticles have been used to obtain plasmonic Random Lasers, a type of cavity-less laser that is the disordered analogue to traditional lasers, in which both the strong elastic scattering and field confinement due to the plasmon resonances are beneficial to achieving low laser thresholds at low nanoparticle concentrations. Random Lasers have peculiar emission characteristics that make them interesting for novel applications, yet they are still technologically underdeveloped. The optimal choice of silver nanoparticles for this application has been investigated with simulations and experiments, comparing the performance of isotropic and anisotropic nanoparticles. The thesis is structured in four chapters. The first chapter contains an introduction to plasmonic nanoparticles, including the basics of plasmonics, numerical simulations of plasmonic nanoparticles, and general information on the synthesis. The second chapter details a novel synthesis method for silver nanoplates and one characterization that allows distinguishing plasmon resonances associated with different axes of the nanoparticles. The third chapter pertains to Surface Enhanced Raman Scattering, and the fourth chapter is on the Random Lasers.
Le nanoparticelle metalliche presentano modi normali di oscillazione degli elettronic di conduzione chiamati Plasmoni Localizzati di Superficie, che si accoppiano in risonanza con la luce a frequenze visibili. Grazie a questo accoppiamento risonante, le nanoparticelle plasmoniche offrono una forte interazione con la luce, che si manifesta nella colorazione intensa dei colloidi plasmonici e amplifica notevolmente i campi elettrici in prossimità delle nanoparticelle. Durante i miei studi di dottorato, ho imparato come preparare colloidali di nanoparticelle d'argento e caratterizzarli con varie tecniche sperimentali e simulazioni numeriche. In questa tesi vengono presentate due applicazioni delle nanoparticelle in cui è sfruttata la forte interazione con la luce. La prima è la Spettroscopia Raman Ampificata da Superfici (Surface Enhanced Raman Spectroscopy, SERS), un'applicazione di sensing in cui le nanoparticelle agiscono da nanoantenna, amplificando di diversi ordini di grandezza l'interazione luce-materia con le molecole di analita, grazie al forte confinamento del campo elettrico risultante dalla risonanza. I sensori basati su SERS possono raggiungere limiti di rilevamento estremamente bassi e sono una tecnica analitica molto efficace. In questo contesto sono stati studiati due tipi di colloidi plasmonici d'argento con forte attività SERS. Nella seconda applicazione le nanoparticelle colloidali sono state utilizzate per ottenere Random Laser plasmonici, un tipo di laser senza cavità, analogo disordinato dei laser tradizionali, in cui sia il forte scattering elastico che il confinamento del campo dovuti alle risonanze plasmoniche sono utili per raggiungere una bassa soglia del laser a basse concentrazioni di nanoparticelle. I Random Laser hanno caratteristiche di emissione peculiari che li rendono interessanti per nuove applicazioni, tuttavia sono ancora tecnologicamente poco sviluppati. È stata investigata la scelta ottimale di nanoparticelle d'argento per questa applicazione con simulazioni ed esperimenti, confrontando le prestazioni di nanoparticelle isotropiche e anisotropiche. La tesi è strutturata in quattro capitoli. Il primo capitolo contiene un'introduzione alle nanoparticelle plasmoniche, compresi i concetti di base della plasmonica, le simulazioni numeriche delle nanoparticelle plasmoniche e informazioni generali sulla sintesi. Il secondo capitolo dettaglia un nuovo metodo di sintesi per nanoprismi di argento e una caratterizzazione che consente di distinguere le risonanze plasmoniche associate a diversi assi delle nanoparticelle. Il terzo capitolo riguarda la Spettroscopia Raman amplificata, e il quarto capitolo tratta dei Random Laser.
Applicazioni alla Fotonica di Nanoparticelle Colloidali di Argento
SALEMI, LUCA
2024
Abstract
Metallic nanoparticles exhibit normal modes of oscillation of the conduction electrons called Localized Surface Plasmons that couple resonantly with light at visible frequencies. Owing to this resonant coupling, plasmonic nanoparticles offer a strong interaction with light, which is manifested as intense colors of plasmonic colloids and greatly amplifies electric fields in the proximity of the nanoparticles. During my PhD studies, I learned how to prepare colloids of silver nanoparticles and characterize them with various experimental techniques and numerical simulations. Two applications of the nanoparticles in which the strong interaction with light is exploited are presented. The first is Surface Enhanced Raman Scattering (SERS), a sensing application in which the nanoparticles act as a nanoantenna to increase light-matter interaction with target molecules by several orders of magnitude, due to the strong field confinement resulting from the resonance. SERS-based sensors can reach extremely low limits of detection and are a powerful analytical technique. Two types of silver plasmonic colloids with strong SERS activity have been studied in this regard. In the second application the colloidal nanoparticles have been used to obtain plasmonic Random Lasers, a type of cavity-less laser that is the disordered analogue to traditional lasers, in which both the strong elastic scattering and field confinement due to the plasmon resonances are beneficial to achieving low laser thresholds at low nanoparticle concentrations. Random Lasers have peculiar emission characteristics that make them interesting for novel applications, yet they are still technologically underdeveloped. The optimal choice of silver nanoparticles for this application has been investigated with simulations and experiments, comparing the performance of isotropic and anisotropic nanoparticles. The thesis is structured in four chapters. The first chapter contains an introduction to plasmonic nanoparticles, including the basics of plasmonics, numerical simulations of plasmonic nanoparticles, and general information on the synthesis. The second chapter details a novel synthesis method for silver nanoplates and one characterization that allows distinguishing plasmon resonances associated with different axes of the nanoparticles. The third chapter pertains to Surface Enhanced Raman Scattering, and the fourth chapter is on the Random Lasers.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Salemi_autoarchiviazione.pdf
accesso aperto
Dimensione
7.23 MB
Formato
Adobe PDF
|
7.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/165684
URN:NBN:IT:UNICT-165684