Neutrino Physics has seen very important discoveries in recent decades which have made it one of the most promising fields for the discovery of new Physics beyond the Standard Model of the elementary particles. The discovery of the flavour oscillation of neutrinos had the direct consequence that the neutrino has a very small mass, if compared to other leptons, in contrast as was hypothesized when it was introduced. There are three lepton families of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. In addition to these three flavour eigenstates, there are three mass eigenstates. The value of the mass of these three eigenstates, however, is not known since experimentally it is possible to measure only the squared difference of the masses of the different eigenstates. Thanks to quantum resonance effects during propagation in matter, it was discovered that m_1 < m_2 but we know nothing about m_3. This led to the creation of two different orderings for the mass of the three eigenstates: in Normal Mass Ordering (NMO) m_3 takes on the higher mass value while in the case of Inverted Mass Ordering (IMO), it takes on the lower value. In order to find out which order is the correct one, the JUNO (Jiangmen Underground Neutrino Observatory) Neutrino Observatory is being built in China. JUNO can detect neutrinos coming from different sources and this Ph.D. thesis focuses on studying the detection of neutrinos emitted by QCD-driven SuperNova (SN). This is a non-standard mechanism and the detection of neutrinos coming from this kind of SN with JUNO is studied for the first time. The promising results are shown in the first part of this Ph.D. thesis. The second part presents a review of the Silicon Photo-Multiplier (SiPM) technologies and its use in TAO (Taishan Antineutrino Observatory), a second detector of the JUNO Observatory to be placed 30 m away from the core of a nuclear power plant in China. The SiPMs to be used have to fulfil a list of requirements and, for this reason, they have to be tested before the deployment in the final detector. The set-up designed for the test and the procedure to be performed will be described in the last chapter of the Thesis.
La Fisica dei Neutrini ha visto negli ultimi decenni scoperte molto importanti che l'hanno resa uno dei campi più promettenti per la scoperta di nuova Fisica oltre il Modello Standard delle particelle elementari. La scoperta dell'oscillazione del sapore dei neutrini ha avuto la diretta conseguenza che il neutrino ha una massa molto piccola, se paragonata a quella degli altri leptoni, contrariamente a quanto ipotizzato al momento della sua introduzione. Esistono tre famiglie di neutrini leptonici: neutrini elettronici, neutrini muonici e neutrini tau. Oltre a questi tre autostati di sapore, ci sono tre autostati di massa. Il valore della massa di questi tre autostati, tuttavia, non è noto poiché sperimentalmente è possibile misurare solo la differenza al quadrato delle masse dei diversi autostati. Grazie agli effetti di risonanza quantistica durante la propagazione nella materia, si è scoperto che m_1 < m_2 ma di m_3 non sappiamo nulla. Ciò ha portato alla creazione di due diversi ordinamenti per la massa dei tre autostati: nel Normal Mass Ordering (NMO) m_3 assume il valore di massa più elevato mentre nel caso dell'Inverted Mass Ordering (IMO), assume il valore inferiore. Per scoprire quale sia l’ordine corretto, in Cina si sta costruendo l’Osservatorio per neutrini JUNO (Jiangmen Underground Neutrino Observatory). JUNO può rilevare neutrini provenienti da diverse fonti e tesi di dottorato si concentra sullo studio della rivelazione dei neutrini emessi da QCD-driven SuperNova (SN). Si tratta di un meccanismo non standard e per la prima volta viene studiata la rivelazione di neutrini provenienti da questo tipo di SN con JUNO. I risultati promettenti sono mostrati nella prima parte di questa tesi di dottorato. La seconda parte presenta una revisione delle tecnologie del Silicon Photo-Moltiplicatore (SiPM) e del suo utilizzo nel TAO (Taishan Antineutrino Observatory), un secondo rilevatore dell'Osservatorio JUNO che sarà posizionato a 30 m di distanza dal nocciolo di una centrale nucleare in Cina. I SiPM da utilizzare devono soddisfare un elenco di requisiti e, per questo motivo, devono essere testati prima dell'implementazione nel rilevatore finale. Il sistemato progettato per le misure sui SiPM e la procedura da eseguire saranno descritti nell'ultimo capitolo della Tesi.
Studio delle prestazioni nella rivelazione dei neutrini in JUNO (Jiangmen Underground Neutrino Observatory)
LOMBARDO, Claudio
2024
Abstract
Neutrino Physics has seen very important discoveries in recent decades which have made it one of the most promising fields for the discovery of new Physics beyond the Standard Model of the elementary particles. The discovery of the flavour oscillation of neutrinos had the direct consequence that the neutrino has a very small mass, if compared to other leptons, in contrast as was hypothesized when it was introduced. There are three lepton families of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. In addition to these three flavour eigenstates, there are three mass eigenstates. The value of the mass of these three eigenstates, however, is not known since experimentally it is possible to measure only the squared difference of the masses of the different eigenstates. Thanks to quantum resonance effects during propagation in matter, it was discovered that m_1 < m_2 but we know nothing about m_3. This led to the creation of two different orderings for the mass of the three eigenstates: in Normal Mass Ordering (NMO) m_3 takes on the higher mass value while in the case of Inverted Mass Ordering (IMO), it takes on the lower value. In order to find out which order is the correct one, the JUNO (Jiangmen Underground Neutrino Observatory) Neutrino Observatory is being built in China. JUNO can detect neutrinos coming from different sources and this Ph.D. thesis focuses on studying the detection of neutrinos emitted by QCD-driven SuperNova (SN). This is a non-standard mechanism and the detection of neutrinos coming from this kind of SN with JUNO is studied for the first time. The promising results are shown in the first part of this Ph.D. thesis. The second part presents a review of the Silicon Photo-Multiplier (SiPM) technologies and its use in TAO (Taishan Antineutrino Observatory), a second detector of the JUNO Observatory to be placed 30 m away from the core of a nuclear power plant in China. The SiPMs to be used have to fulfil a list of requirements and, for this reason, they have to be tested before the deployment in the final detector. The set-up designed for the test and the procedure to be performed will be described in the last chapter of the Thesis.File | Dimensione | Formato | |
---|---|---|---|
tesi_dott_finale_noringr.pdf
accesso aperto
Dimensione
50.08 MB
Formato
Adobe PDF
|
50.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/165712
URN:NBN:IT:UNICT-165712