Throughout the course of evolution, cells have developed various forms of communication, which are based on specific molecular interactions and tailored to convey specific messages. The primary cellular communication strategies are mediated through receptor binding or direct contact with the target cell’s membrane. Communication based on the exchange of Extracellular Vesicles (EVs) has emerged as a focal point in the research of the scientific community due to the important stability and versatility of the vesicular structure, but also as a possible use in innovative and effective therapeutic therapies protocols. EVs are essentially information-rich ”packages” containing DNA, RNA, proteins, and various molecules. They play a critical role in stimulating and regulating molecular pathways within target cells. In this doctoral work, various strategies are introduced, in which a model based on Ordinary Differential Equations (ODE) assesses the enhanced efficiency of cell-cell communication through EVs when compared to traditional ligand-receptor strategies. These findings have the potential to revolutionize drug delivery systems, especially for complex diseases. This interdisciplinary approach treats the biological entity of the cell as both transmitter and receiver, emphasizing the internalization of EVs through fusion with the plasma membrane of the target cell. However, the paucity of information regarding these processes hinders the full potential of EV-based therapies. To bridge this knowledge gap, this thesis work presents a mathematical methodology, marking a fundamental first step towards making a significant contribution to the study of EV-mediated communication. Parallel to this, a mirror approach can be imagined in which the information is no longer the content of the single EV but the vesicle itself. The artificial vesicle (liposome) can then be marked with a dye and follow its path over time. This strategy is applied in the field of microfluidics where a new approach is introduced that involves the instant manipulation of dye droplets within a continuous oil phase, forming small droplets, to induce changes in flow properties. Applications range from medicine to biodefense and drug delivery. This thesis not only presents a new coding methodology, but also establishes a model to better understand and predict the dynamics within microfluidic channels, with the potential to revolutionize various fields. The thesis begins with an introductory section that addresses the topic of general Molecular Communication (Section 5.1), its applications in biology (Section 6.1), and in microfluidics (Section 5.2). A background paragraph is also reported in Section 6, in order to help understand the works reported in the thesis. The purpose of the research is reported in Section 7, while the section dedicated to the results of the research work is structured into two independent parts. The section dedicated to the results of the research work is structured into two independent parts. Part I in Section 8 addresses the first issue, i.e. different modeling approaches of cellular communication based on real experimental data in which it is demonstrated that EVs can have a crucial and important role in the recovery of neuronal degeneration in Parkinson’s disease. This strategy is performed through the use of linear and nonlinear models, which reconstruct and describe the main internalization strategies of EVs by a target cell. Furthermore, it focuses on mathematical strategies to derive the necessary parameters for such models starting from laboratory experimental data or in silico simulations. Part II in Section 9 introduces the possibility of transmitting information in a different way, since the information of interest is no longer the content of the EV but the lipid envelope of which it is formed. A microfluidic system is used to transmit useful information by varying the ”sliding” speed of these artificial EVs. Finally, Section 10 reports the conclusions and future perspectives of this research work and Section 11 contains acknowledgments.
Nel corso dell’evoluzione, le cellule hanno sviluppato diverse forme di comunicazione basate su specifiche interazioni molecolari e mirate a trasmettere messaggi specifici. Le strategie principali di comunicazione cellulare avvengono mediante il legame con recettori o il contatto diretto con la membrana delle cellule bersaglio. La comunicazione basata sullo scambio di Vescicole Extracellulari (EVs) `e emersa come punto focale nella ricerca della comunit`a scientifica, grazie alla stabilit`a e versatilit`a della struttura delle vescicole e alla possibilit`a di utilizzarle in terapie innovative ed efficaci. Le EVs sono essenzialmente ”pacchetti” ricchi di informazioni contenenti DNA, RNA, proteine e diverse molecole, e svolgono un ruolo critico nella stimolazione e regolazione delle vie molecolari nelle cellule bersaglio. In questa tesi di dottorato vengono presentate diverse strategie in cui un modello basato su Equazioni Differenziali Ordinarie (ODE) valuta l’efficienza superiore della comunicazione cellula-cellula attraverso le EVs rispetto alle tradizionali strategie ligando-recettore. Questi risultati hanno il potenziale per rivoluzionare i sistemi di somministrazione di farmaci, specialmente per le malattie complesse. Questo approccio interdisciplinare considera l’entit`a biologica della cellula come mittente e ricevente, enfatizzando l’internalizzazione delle EVs tramite fusione con la membrana plasmatica della cellula bersaglio. Tuttavia, la scarsit`a di informazioni su questi processi ostacola il pieno potenziale delle terapie basate sulle EVs. Per colmare questa lacuna di conoscenza, questa tesi presenta una metodologia matematica, rappresentando un primo passo fondamentale verso un significativo contributo allo studio della comunicazione mediata dalle EVs. Parallelamente a ci`o, `e possibile immaginare un approccio speculare in cui l’informazione non `e pi`u il contenuto singolo delle EVs, ma la vescicola stessa. La vescicola artificiale (liposoma) pu`o essere quindi contrassegnata con un colore e seguire il suo percorso nel tempo. Questa strategia `e applicata nel campo della microfluidica, dove si introduce un nuovo approccio che coinvolge la manipolazione istantanea di gocce di colorante all’interno di una fase oleosa continua, formando piccole gocce, per indurre variazioni nelle propriet`a del flusso. Le applicazioni spaziano dalla medicina alla biotutela e alla somministrazione di farmaci. Questa tesi non solo presenta una nuova metodologia di codifica, ma stabilisce anche un modello per comprendere e prevedere meglio le dinamiche all’interno dei canali microfluidici, con il potenziale di rivoluzionare vari campi. La tesi inizia con una sezione introduttiva che tratta dell’argomento della Comunicazione Molecolare generale (Sezione 5.1), delle sue applicazioni in biologia (Sezione 6.1) e in microfluidica (Sezione 5.2). Viene inoltre fornito un paragrafo di contesto nella Sezione 6, per aiutare a comprendere i lavori riportati nella tesi. Nella Sezione 7 viene riportato lo scopo della ricerca, mentre la sezione dedicata ai risultati del lavoro di ricerca `e strutturata in due parti indipendenti. La Parte I nella Sezione 8 affronta la prima problematica, ossia le diverse strategie di modellazione della comunicazione cellulare basata su dati sperimentali reali in cui si dimostra che le EVs possono svolgere un ruolo cruciale e importante nel recupero della degenerazione neuronale nella malattia di Parkinson. Questa strategia viene realizzata attraverso l’uso di modelli lineari e non lineari che ricostruiscono e descrivono le principali strategie di internalizzazione delle EVs da parte di una cellula bersaglio. Inoltre, si concentra sulle strategie matematiche per derivare i parametri necessari per tali modelli a partire dai dati sperimentali di laboratorio o dalle simulazioni in silico. La Parte II nella Sezione 9 introduce la possibilit`a di trasmettere informazioni in un modo diverso, poich´e l’interesse non `e pi`u il contenuto delle EVs, ma l’involucro lipidico di cui sono composte. Un sistema microfluidico viene utilizzato per trasmettere informazioni utili variando la ”velocit`a di scorrimento” di queste EVs artificiali. Infine, la Sezione 10 riporta le conclusioni e le prospettive future di questo lavoro di ricerca, mentre la Sezione 11 contiene gli ringraziamenti.
Modellazione della comunicazione da cellula a cellula utilizzando Vescicole Extracellulari come pacchetti di informazioni
PAPPALARDO, FABRIZIO
2024
Abstract
Throughout the course of evolution, cells have developed various forms of communication, which are based on specific molecular interactions and tailored to convey specific messages. The primary cellular communication strategies are mediated through receptor binding or direct contact with the target cell’s membrane. Communication based on the exchange of Extracellular Vesicles (EVs) has emerged as a focal point in the research of the scientific community due to the important stability and versatility of the vesicular structure, but also as a possible use in innovative and effective therapeutic therapies protocols. EVs are essentially information-rich ”packages” containing DNA, RNA, proteins, and various molecules. They play a critical role in stimulating and regulating molecular pathways within target cells. In this doctoral work, various strategies are introduced, in which a model based on Ordinary Differential Equations (ODE) assesses the enhanced efficiency of cell-cell communication through EVs when compared to traditional ligand-receptor strategies. These findings have the potential to revolutionize drug delivery systems, especially for complex diseases. This interdisciplinary approach treats the biological entity of the cell as both transmitter and receiver, emphasizing the internalization of EVs through fusion with the plasma membrane of the target cell. However, the paucity of information regarding these processes hinders the full potential of EV-based therapies. To bridge this knowledge gap, this thesis work presents a mathematical methodology, marking a fundamental first step towards making a significant contribution to the study of EV-mediated communication. Parallel to this, a mirror approach can be imagined in which the information is no longer the content of the single EV but the vesicle itself. The artificial vesicle (liposome) can then be marked with a dye and follow its path over time. This strategy is applied in the field of microfluidics where a new approach is introduced that involves the instant manipulation of dye droplets within a continuous oil phase, forming small droplets, to induce changes in flow properties. Applications range from medicine to biodefense and drug delivery. This thesis not only presents a new coding methodology, but also establishes a model to better understand and predict the dynamics within microfluidic channels, with the potential to revolutionize various fields. The thesis begins with an introductory section that addresses the topic of general Molecular Communication (Section 5.1), its applications in biology (Section 6.1), and in microfluidics (Section 5.2). A background paragraph is also reported in Section 6, in order to help understand the works reported in the thesis. The purpose of the research is reported in Section 7, while the section dedicated to the results of the research work is structured into two independent parts. The section dedicated to the results of the research work is structured into two independent parts. Part I in Section 8 addresses the first issue, i.e. different modeling approaches of cellular communication based on real experimental data in which it is demonstrated that EVs can have a crucial and important role in the recovery of neuronal degeneration in Parkinson’s disease. This strategy is performed through the use of linear and nonlinear models, which reconstruct and describe the main internalization strategies of EVs by a target cell. Furthermore, it focuses on mathematical strategies to derive the necessary parameters for such models starting from laboratory experimental data or in silico simulations. Part II in Section 9 introduces the possibility of transmitting information in a different way, since the information of interest is no longer the content of the EV but the lipid envelope of which it is formed. A microfluidic system is used to transmit useful information by varying the ”sliding” speed of these artificial EVs. Finally, Section 10 reports the conclusions and future perspectives of this research work and Section 11 contains acknowledgments.File | Dimensione | Formato | |
---|---|---|---|
Fabrizio_Pappalardo_tesi_dottorato.pdf
accesso aperto
Dimensione
18.71 MB
Formato
Adobe PDF
|
18.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/165714
URN:NBN:IT:UNICT-165714