In this work an investigation of the sediment transport processes induced by natural and anthropogenic forcings is presented. Through a numerical modelling approach, the contribution to the sediment transport phenomena due to natural meteomarine forcing first and then caused by ship propellers has been evaluated respectively using the Delft3D suite and the FUNWAVE-TVD model. Firstly, a parametric and scenarios-based analysis has been provided to gain knowledge on the hydro-morphodynamics and the possible siltation induced by extreme meteo-marine conditions (100-year return period) and freshwater discharges by rivers debouching into the La Spezia military harbour (Liguria, Italy). To do this, numerical simulations of three different scenarios have been performed, taking into account, respectively, the contribution of the waves and the tide (first scenario), the river discharges and the tide (second scenario) and the superposition of all forcings, i.e. waves, tide and river discharges (third scenario). All scenarios have been performed using a uniform wind field from the typical directions blowing on the La Spezia Gulf (north-northeast and south-southeast winds). Results have revealed that, in this peculiar configuration, sheltered by the presence of the islands and the outer main breakwater, the hydro-morphodynamics circulation is strongly influenced by the wind and river discharges. In fact, the wind direction determines the sense of rotation of the circulation cell inside the basin, modified by the freshwater streams. The latter ones, according to the wind direction, contribute to enhance the existing flow field or to generate an additional minor eddy interacting with the main cell. The morphodynamics, instead, is largely controlled by the river discharges, fundamental in supplying and resuspending sediments into the harbour, while the sediment transport is mainly due to the wind forcing. However, both sedimentation and erosion rates are low, confirming that no significant siltation can occur due to natural forcings over the time scale of a storm. Therefore, much attention has been given to anthropogenic contributions, in particular to the impact of ship propellers. For this purpose, the depth-averaged open source Boussinesq FUNWAVE-TVD model has been used and extended to describe the ship-propeller-induced sediment transport. The propeller-induced effect on the sediment transport has been implemented as an additional velocity field on the seabed, resulting in a supplementary contribution to the shear velocity and the bed shear stress, consequently used to compute the suspended load-induced and the bedload-induced morphological changes. Numerical results have confirmed the capability of the new code to qualitatively describe complex morphodynamic patterns, in good agreement with the literature. Precisely, significant similarities have been found in development of the scour process and in the longitudinal profile, characterized by the presence of two scour holes, a small one directly beneath the propeller and the primary scour hole behind the propeller, followed by a deposition mound downstream. However, some modifications need to be made for the overall improvement of the code, like the addition of the propeller wash momentum flux in the hydrodynamic computation and the coupling of the hydro-morphodynamics. Moreover, further numerical and experimental tests will be fundamental for a proper validation of the numerical model, which might therefore provide a useful tool in predicting scour processes, crucial issues in the design and management of ports, navigation channels and maritime structures.
Questo lavoro propone un'indagine sui processi di trasporto dei sedimenti indotti da forzanti naturali e antropiche, in particolare generato dalle eliche delle navi, tramite l'utilizzo di due modelli numerici, Delft3D e FUNWAVE-TVD. Con Delft3D è stata condotta un'analisi parametrica relativa alla morfodinamica e al possibile insabbiamento indotto da condizioni meteo-marine estreme (periodo di ritorno di 100 anni) e da torrenti di acqua dolce sfocianti nel porto militare di La Spezia. Sono state eseguite simulazioni numeriche di tre diversi scenari, tenendo conto, rispettivamente, del contributo delle onde e della marea (I scenario), delle portate fluviali e della marea (II scenario) e della sovrapposizione di tutte le forzanti (III scenario). Tutti gli scenari sono stati eseguiti utilizzando un campo di vento uniforme, proveniente da NNE e SSE, direzioni tipiche del Golfo. I risultati hanno rivelato che, in questa peculiare configurazione, riparata dalla presenza delle isole e della diga foranea, la direzione del vento determina il senso di rotazione della cella di circolazione nel bacino, modificata dai flussi d'acqua dolce in funzione della direzione del vento. La morfodinamica, invece, è largamente controllata dagli scarichi fluviali, fondamentali nel fornire e risospendere i sedimenti nel porto, mentre il trasporto è dovuto principalmente al vento. Tuttavia, i tassi di sedimentazione ed erosione sono trascurabili, confermando che non può verificarsi insabbiamento a causa di forzanti naturali. Pertanto, maggior interesse è stato rivolto all'impatto delle eliche delle navi. A questo scopo, è stato utilizzato ed esteso il modello di Boussinesq FUNWAVE-TVD. Tale effetto è stato implementato come un campo di velocità aggiuntivo sul fondale marino, fornendo un contributo alla velocità di taglio e allo sforzo di taglio agenti sul fondo, utilizzati per il calcolo delle variazioni morfologiche del fondo. I risultati numerici hanno confermato la capacità del nuovo codice di descrivere qualitativamente pattern morfodinamici complessi, in accordo con la letteratura. Più in dettaglio, significative analogie sono state riscontrate nel profilo longitudinale, caratterizzato dalla presenza di due scavi, uno minore direttamente al di sotto dell'elica e uno scavo primario a una certa distanza dall'elica, seguiti da un accumulo di sedimento a valle. Ulteriori prove numeriche e sperimentali saranno fondamentali per una corretta validazione del modello numerico.
Sediment transport processes in harbour settings: investigation of the effects induced by natural and anthropogenic forcing
COLANGELI, CAROLA
2023
Abstract
In this work an investigation of the sediment transport processes induced by natural and anthropogenic forcings is presented. Through a numerical modelling approach, the contribution to the sediment transport phenomena due to natural meteomarine forcing first and then caused by ship propellers has been evaluated respectively using the Delft3D suite and the FUNWAVE-TVD model. Firstly, a parametric and scenarios-based analysis has been provided to gain knowledge on the hydro-morphodynamics and the possible siltation induced by extreme meteo-marine conditions (100-year return period) and freshwater discharges by rivers debouching into the La Spezia military harbour (Liguria, Italy). To do this, numerical simulations of three different scenarios have been performed, taking into account, respectively, the contribution of the waves and the tide (first scenario), the river discharges and the tide (second scenario) and the superposition of all forcings, i.e. waves, tide and river discharges (third scenario). All scenarios have been performed using a uniform wind field from the typical directions blowing on the La Spezia Gulf (north-northeast and south-southeast winds). Results have revealed that, in this peculiar configuration, sheltered by the presence of the islands and the outer main breakwater, the hydro-morphodynamics circulation is strongly influenced by the wind and river discharges. In fact, the wind direction determines the sense of rotation of the circulation cell inside the basin, modified by the freshwater streams. The latter ones, according to the wind direction, contribute to enhance the existing flow field or to generate an additional minor eddy interacting with the main cell. The morphodynamics, instead, is largely controlled by the river discharges, fundamental in supplying and resuspending sediments into the harbour, while the sediment transport is mainly due to the wind forcing. However, both sedimentation and erosion rates are low, confirming that no significant siltation can occur due to natural forcings over the time scale of a storm. Therefore, much attention has been given to anthropogenic contributions, in particular to the impact of ship propellers. For this purpose, the depth-averaged open source Boussinesq FUNWAVE-TVD model has been used and extended to describe the ship-propeller-induced sediment transport. The propeller-induced effect on the sediment transport has been implemented as an additional velocity field on the seabed, resulting in a supplementary contribution to the shear velocity and the bed shear stress, consequently used to compute the suspended load-induced and the bedload-induced morphological changes. Numerical results have confirmed the capability of the new code to qualitatively describe complex morphodynamic patterns, in good agreement with the literature. Precisely, significant similarities have been found in development of the scour process and in the longitudinal profile, characterized by the presence of two scour holes, a small one directly beneath the propeller and the primary scour hole behind the propeller, followed by a deposition mound downstream. However, some modifications need to be made for the overall improvement of the code, like the addition of the propeller wash momentum flux in the hydrodynamic computation and the coupling of the hydro-morphodynamics. Moreover, further numerical and experimental tests will be fundamental for a proper validation of the numerical model, which might therefore provide a useful tool in predicting scour processes, crucial issues in the design and management of ports, navigation channels and maritime structures.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Colangeli.pdf
accesso aperto
Dimensione
34.44 MB
Formato
Adobe PDF
|
34.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/165890
URN:NBN:IT:UNIVPM-165890