The aim of this thesis is to propose a systematic exposition of some analytic and geometric problems arising from the study of sub-Riemannian geometry, Carnot-Carathéodory spaces and, more broadly, anisotropic metric and differential structures. We deal with four main topics. 1 Calculus of variations for local functionals depending on vector fields 2 PDEs over Carnot-Carathéodory structures. 3 Regularity theory for almost perimeter minimizers in Carnot groups. 4 Geometry of hypersurfaces in Heisenberg groups.

New and old sub-Riemannian challenges bridging analysis and geometry

Verzellesi, Simone
2024

Abstract

The aim of this thesis is to propose a systematic exposition of some analytic and geometric problems arising from the study of sub-Riemannian geometry, Carnot-Carathéodory spaces and, more broadly, anisotropic metric and differential structures. We deal with four main topics. 1 Calculus of variations for local functionals depending on vector fields 2 PDEs over Carnot-Carathéodory structures. 3 Regularity theory for almost perimeter minimizers in Carnot groups. 4 Geometry of hypersurfaces in Heisenberg groups.
15-nov-2024
Inglese
sub-Riemannian geometry, Heisenberg group, minimal surfaces, viscosity solutions, integral representation, Bernstein problem, prescribed mean curvature.
Pinamonti, Andrea
Università degli studi di Trento
TRENTO
394
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_VERZELLESI_22_10_24.pdf

accesso aperto

Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/166325
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-166325