The possibility to compute first- and second-derivatives of functionals subject to equality constraints given by state equations (and in particular non-linear systems of Partial Derivative Equations) allows us to use efficient techniques to solve several industrial-strength problems. Among possible applications that require knowledge of the derivatives, let us mention: aerodynamic shape optimization with gradient-based descent algorithms, propagation of uncertainties using perturbation techniques, robust optimization, and improvement of the accuracy of a functionnal using the adjoint state. In this work, we develop and analyze several strategies to evaluate the first- and second-derivatives of constrained functionals, using techniques based on Automatic Differentiation. Furthermore, we propose a descent algorithm for aerodynamic shape optimization, that is based on techniques of multi-level gradient, and which can be applied to different kinds of parameterization.

Sensitivity Evaluation in Aerodynamic Optimal Design

MARTINELLI, MASSIMILIANO
2007

Abstract

The possibility to compute first- and second-derivatives of functionals subject to equality constraints given by state equations (and in particular non-linear systems of Partial Derivative Equations) allows us to use efficient techniques to solve several industrial-strength problems. Among possible applications that require knowledge of the derivatives, let us mention: aerodynamic shape optimization with gradient-based descent algorithms, propagation of uncertainties using perturbation techniques, robust optimization, and improvement of the accuracy of a functionnal using the adjoint state. In this work, we develop and analyze several strategies to evaluate the first- and second-derivatives of constrained functionals, using techniques based on Automatic Differentiation. Furthermore, we propose a descent algorithm for aerodynamic shape optimization, that is based on techniques of multi-level gradient, and which can be applied to different kinds of parameterization.
2007
en
Scuola Normale Superiore
Esperti anonimi
File in questo prodotto:
File Dimensione Formato  
Martinelli_Massimiliano.pdf

accesso aperto

Dimensione 8.73 MB
Formato Adobe PDF
8.73 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/167242
Il codice NBN di questa tesi è URN:NBN:IT:SNS-167242