Inspired by the work of Jankiewicz, Norin, and Wise, in this thesis we describe that given a hyperbolic right-angled polytope, a colouring and a set of moves, it produces a hyperbolic manifold M with a map f: M→S¹. We apply this to a family of hyperbolic polytopes studied by Potyagailo and Vinberg, and by analyzing the resulting map we obtain a 5-manifold fibering over the circle, a 6-manifold with a perfect circle-valued Morse function, and a 7-manifold and a 8-manifold which fiber algebraically. These results are joint work with Giovanni Italiano and Bruno Martelli.
Bestvina–Brady Morse theory on hyperbolic manifolds
MIGLIORINI, Matteo
2023
Abstract
Inspired by the work of Jankiewicz, Norin, and Wise, in this thesis we describe that given a hyperbolic right-angled polytope, a colouring and a set of moves, it produces a hyperbolic manifold M with a map f: M→S¹. We apply this to a family of hyperbolic polytopes studied by Potyagailo and Vinberg, and by analyzing the resulting map we obtain a 5-manifold fibering over the circle, a 6-manifold with a perfect circle-valued Morse function, and a 7-manifold and a 8-manifold which fiber algebraically. These results are joint work with Giovanni Italiano and Bruno Martelli.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accesso aperto
Dimensione
740.84 kB
Formato
Adobe PDF
|
740.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/167431
Il codice NBN di questa tesi è
URN:NBN:IT:SNS-167431