The role of proNGF, the precursor of Nerve Growth Factor (NGF), on the biology of adult neural stem cells (aNSCs) is still unclear. Here I analyzed adult hippo-campal neurogenesis in AD11 transgenic mice, in which the constitutive expression of anti-NGF antibody leads to an imbalance of proNGF over mature NGF. I found in-creased proliferation of progenitors but a reduced neurogenesis in the AD11 DG- hippocampus (HP-DG). Also in vitro, AD11 hippocampal neural stem cells (NSCs) pro-liferated more but were unable to differentiate into morphologically mature neu-rons. By treating wild-type (WT) hippocampal progenitors with the uncleavable form of proNGF (proNGF-KR) I demonstrated that proNGF acts as mitogen on aNSCs at low concentration. The mitogenic effect of proNGF was specifically addressed to the radial glia-like (RGL) neural stem cells through the induction of cyclin D1 expression. These cells express high level of p75NTR, as demonstrated by immunofluorescence analyses performed ex vivo on RGL cells isolated from freshly-dissociated HP-DG or selected in vitro from NSCs by LIF (leukemia inhibitory factor). Clonogenic assay per-formed in the absence of mitogens showed that RGLs respond to proNGF-KR by re-activating their proliferation and thus leading to neurospheres formation. The mito-genic effect of proNGF was further exploited in the expansion of mouse induced Neural Stem Cells (iNSCs). Chronic exposure of iNSCs to proNGF-KR increased their proliferation. Altogether, I demonstrated that proNGF acts as mitogen on hippo-campal and induced neural stem cells.
ProNGF is a cell-type specific mitogen for adult hippocampal and for induced neural stem cells
CORVAGLIA, Valerio
2019
Abstract
The role of proNGF, the precursor of Nerve Growth Factor (NGF), on the biology of adult neural stem cells (aNSCs) is still unclear. Here I analyzed adult hippo-campal neurogenesis in AD11 transgenic mice, in which the constitutive expression of anti-NGF antibody leads to an imbalance of proNGF over mature NGF. I found in-creased proliferation of progenitors but a reduced neurogenesis in the AD11 DG- hippocampus (HP-DG). Also in vitro, AD11 hippocampal neural stem cells (NSCs) pro-liferated more but were unable to differentiate into morphologically mature neu-rons. By treating wild-type (WT) hippocampal progenitors with the uncleavable form of proNGF (proNGF-KR) I demonstrated that proNGF acts as mitogen on aNSCs at low concentration. The mitogenic effect of proNGF was specifically addressed to the radial glia-like (RGL) neural stem cells through the induction of cyclin D1 expression. These cells express high level of p75NTR, as demonstrated by immunofluorescence analyses performed ex vivo on RGL cells isolated from freshly-dissociated HP-DG or selected in vitro from NSCs by LIF (leukemia inhibitory factor). Clonogenic assay per-formed in the absence of mitogens showed that RGLs respond to proNGF-KR by re-activating their proliferation and thus leading to neurospheres formation. The mito-genic effect of proNGF was further exploited in the expansion of mouse induced Neural Stem Cells (iNSCs). Chronic exposure of iNSCs to proNGF-KR increased their proliferation. Altogether, I demonstrated that proNGF acts as mitogen on hippo-campal and induced neural stem cells.File | Dimensione | Formato | |
---|---|---|---|
Tesi-Corvaglia.pdf
accesso aperto
Dimensione
5.84 MB
Formato
Adobe PDF
|
5.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/167948
URN:NBN:IT:SNS-167948