Cadmium (Cd) is a heavy metal that is commonly found in the earth’s crust combined with other elements such as oxygen, chlorine, or sulfur. However, having been released into the environment for decades by anthropogenic activities (Thevenod, 2009), Cd is now considered one of the most common environmental contaminants. In particular, Cd can occur in air, water, soil and subsoil. Workers are mainly exposed to the inhalation of Cd-containing particles. The non-occupational population absorbs low concentration of Cd through cigarette smoking, ingestion of contaminated water and food. Cd was classified by the World Health Organization’s International Agency for Research on Cancer (IARC) as a human carcinogen (Group 1) in 1993. However, the molecular mechanisms underpinning the process of Cd carcinogenicity are still not fully understood. Cd, as a non-genotoxic agent, cannot directly cause DNA mutations. Cd can instead act through the alteration of epigenetic mechanisms and gene expression, the induction of oxidative stress, the inhibition of DNA repair mechanisms and the interaction with proteins involved in cell cycle control, apoptosis and cellular defence system. Otherwise, Cd can interfere with the homeostasis of many essential metals, such as zinc, calcium and iron. Cd is able to displace zinc in the proteins with zinc-finger motifs, impairing their functionality. To better investigate the Cd-induced carcinogenesis, we decided to use the Cell Transformation Assay (CTA), one of the most advanced in vitro tests to screen the carcinogenic potential and to understand the mechanism of action of chemical substances. Indeed, these assays offer several advantages in comparison to the in vivo bioassays in rodents, especially their characteristic to reproduce key stages of in vivo transformation. In this context, the purposes of this thesis work were: i) to investigate the mechanisms by which cadmium induces cellular transformation; ii) to implement one of the most promising in vitro assays to assess the potential of chemical carcinogenesis. We exploited the use of CTA by jointly applying different techniques. We first carried out a transcriptomic analyses to evidence deregulated pathways in C3H10T1/2Cl8 after 24h of Cd treatment or in foci-derived transformed cells. These two conditions have allowed to analyse the early events inducing the malignant phenotype and the features of transformed cells. Consequently, we focused on metabolic rewiring and modifications of mitochondrial structure and function caused by Cd. We applied seahorse methods, spectrophotometric enzymatic and metabolite assays to verify the first hypothesis; to investigate the second theory, we applied the laser scanning confocal fluorescence microscopy, image analysis and flow cytometry technique. In the end, we have compared the transcriptome of two different human cell lines: HepG2 and SHSY5Y. HepG2 is a hepatocellular carcinoma cell line, and SYSH5Y is a neuroblastoma cell line. We studied this comparison to look for genes with common deregulation in both the cell lines. Due to the limits of the current methods in adequately addressing the identification of non-genotoxic chemicals, the scientific and regulatory community has recognised the need to develop the so-called Integrated Approach to Testing and Assessment (IATA) (Corvi et al., 2017). This approach considers all the existing information, including environmental and epidemiological data, traditional and alternative toxicity tests, to analyse multiple endpoints related to cancer hallmarks and to improve the assessment of the carcinogenic potential of a substance. In this perspective, the present thesis project included mechanistic studies and in vitro assays on the basis of an integrated approach which, using multiple sources, is able to provide many useful information for understanding the carcinogenesis process and the underlying mechanisms.
Il cadmio (Cd) è un metallo pesante che si può trovare sulla crosta terrestre associato con altri elementi più comuni, come l’ossigeno, il cloro e il zolfo. Tuttavia, essendo stato massicciamente rilasciato nell’ambiente dall’uomo, il Cd è attualmente considerato uno dei più comuni inquinanti ambientali. Infatti, è presente in tutti i comparti (aria, acque, suolo e sottosuolo). I lavoratori sono maggiormente esposti all’inalazione di particelle contenenti cadmio, mentre la popolazione non occupazionalmente esposta è esposta al Cd attraverso il fumo di sigaretta e l’ingestione di acque e cibi contaminati. Nel 1993, il Cd è stato classificato come cancerogeno (gruppo 1) per l’uomo dall’Agenzia Internazionale per la Ricerca sul Cancro (IARC), ma i meccanismi molecolari alla base della sua cancerogenesi sono ancora poco noti. Sappiamo però che il Cd è un agente non genotossico. Questo metallo non provoca direttamente mutazioni del DNA, ma può agire mediante l’alterazione dei meccanismi epigenetici e dell’espressione genica, l’induzione di stress ossidativo, l’inibizione dei meccanismi di riparo del DNA e l’interazione con proteine coinvolte nel controllo del ciclo cellulare, nell’apoptosi e nelle difese cellulari. Il cadmio può inoltre interferire con l’omeostasi di molti metalli essenziali, tra cui lo zinco, il calcio e il ferro. In particolare, il Cd sembra essere in grado di sostituire lo zinco nelle proteine che possiedono motivi zinc-finger, compromettendone la funzionalità. Per studiare più approfonditamente la carcinogenesi indotta da Cd, abbiamo deciso di utilizzare il Cell Transformation Assay (CTA), uno dei test in vitro più avanzati per lo screening del potenziale di cancerogenesi e per comprendere il meccanismo d'azione delle sostanze chimiche. In effetti, questi saggi sono in grado di riprodurre le fasi chiave delle trasformazioni neoplastiche in vivo. In questo contesto, gli scopi di questo lavoro di tesi sono stati: i) studiare i meccanismi attraverso cui il Cd induce la trasformazione cellulare; ii) implementare uno dei test in vitro più avanzati per valutare il potenziale della carcinogenesi chimica. Abbiamo prima analizzato il transcrittoma delle C3H10T1 / 2Cl8 dopo 24 ore di trattamento con Cd e di cellule completamente trasformate (foci). Poi ci siamo concentrati sulle modifiche metaboliche e/o nella morfologia e nella funzione dei mitocondri causate dal Cd. Abbiamo applicato la tecnica del Seahorse, saggi enzimatici e dei metaboliti per verificare la prima ipotesi; la microscopia confocale a fluorescenza a scansione laser, l'analisi dell'immagine e la tecnica della citometria a flusso per la seconda. Alla fine, abbiamo confrontato il transcrittoma di due diverse linee cellulari umane: le HepG2 e SHSY5Y. La prima è una linea cellulare di carcinoma epatico, la seconda è una linea cellulare di neuroblastoma. L'OECD ha stabilito che il CTA rappresenta il saggio centrale per la valutazione della cancerogenesi nell’ambito di un approccio integrato. In particolare, a causa dei limiti delle attuali metodologie nell’affrontare adeguatamente l'identificazione di sostanze chimiche non genotossiche, la comunità scientifica e normativa ha riconosciuto la necessità di sviluppare il cosiddetto Integrated Approach to Testing and Assessment (IATA). Tale approccio considera tutte le informazioni disponibili, incluse quelle derivanti da dati ambientali ed epidemiologici per analizzare più endpoint cellulari e molecolari correlati agli hallmark del cancro e migliorare la valutazione del potenziale di cancerogenicità di una sostanza. In quest’ottica, si è inserito il presente progetto di tesi, in cui studi di tipo meccanicistico, tra cui quelli in silico, sono stati affiancati da saggi in vitro sulla base di un approccio integrato che è in grado di fornire numerose informazioni utili alla comprensione del processo di cancerogenesi e dei meccanismi sottostanti.
INVESTIGATION OF MOLECULAR AND CELLULAR MECHANISMS UNDERPINNING Cd-INDUCED CARCINOGENESIS THROUGH IN VITRO AND IN SILICO APPROACHES.
OLDANI, MONICA
2020
Abstract
Cadmium (Cd) is a heavy metal that is commonly found in the earth’s crust combined with other elements such as oxygen, chlorine, or sulfur. However, having been released into the environment for decades by anthropogenic activities (Thevenod, 2009), Cd is now considered one of the most common environmental contaminants. In particular, Cd can occur in air, water, soil and subsoil. Workers are mainly exposed to the inhalation of Cd-containing particles. The non-occupational population absorbs low concentration of Cd through cigarette smoking, ingestion of contaminated water and food. Cd was classified by the World Health Organization’s International Agency for Research on Cancer (IARC) as a human carcinogen (Group 1) in 1993. However, the molecular mechanisms underpinning the process of Cd carcinogenicity are still not fully understood. Cd, as a non-genotoxic agent, cannot directly cause DNA mutations. Cd can instead act through the alteration of epigenetic mechanisms and gene expression, the induction of oxidative stress, the inhibition of DNA repair mechanisms and the interaction with proteins involved in cell cycle control, apoptosis and cellular defence system. Otherwise, Cd can interfere with the homeostasis of many essential metals, such as zinc, calcium and iron. Cd is able to displace zinc in the proteins with zinc-finger motifs, impairing their functionality. To better investigate the Cd-induced carcinogenesis, we decided to use the Cell Transformation Assay (CTA), one of the most advanced in vitro tests to screen the carcinogenic potential and to understand the mechanism of action of chemical substances. Indeed, these assays offer several advantages in comparison to the in vivo bioassays in rodents, especially their characteristic to reproduce key stages of in vivo transformation. In this context, the purposes of this thesis work were: i) to investigate the mechanisms by which cadmium induces cellular transformation; ii) to implement one of the most promising in vitro assays to assess the potential of chemical carcinogenesis. We exploited the use of CTA by jointly applying different techniques. We first carried out a transcriptomic analyses to evidence deregulated pathways in C3H10T1/2Cl8 after 24h of Cd treatment or in foci-derived transformed cells. These two conditions have allowed to analyse the early events inducing the malignant phenotype and the features of transformed cells. Consequently, we focused on metabolic rewiring and modifications of mitochondrial structure and function caused by Cd. We applied seahorse methods, spectrophotometric enzymatic and metabolite assays to verify the first hypothesis; to investigate the second theory, we applied the laser scanning confocal fluorescence microscopy, image analysis and flow cytometry technique. In the end, we have compared the transcriptome of two different human cell lines: HepG2 and SHSY5Y. HepG2 is a hepatocellular carcinoma cell line, and SYSH5Y is a neuroblastoma cell line. We studied this comparison to look for genes with common deregulation in both the cell lines. Due to the limits of the current methods in adequately addressing the identification of non-genotoxic chemicals, the scientific and regulatory community has recognised the need to develop the so-called Integrated Approach to Testing and Assessment (IATA) (Corvi et al., 2017). This approach considers all the existing information, including environmental and epidemiological data, traditional and alternative toxicity tests, to analyse multiple endpoints related to cancer hallmarks and to improve the assessment of the carcinogenic potential of a substance. In this perspective, the present thesis project included mechanistic studies and in vitro assays on the basis of an integrated approach which, using multiple sources, is able to provide many useful information for understanding the carcinogenesis process and the underlying mechanisms.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_729318.pdf
accesso aperto
Dimensione
12.24 MB
Formato
Adobe PDF
|
12.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/170495
URN:NBN:IT:UNIMIB-170495