In this thesis, we study compact Anti-de Sitter manifolds of dimension 3 with generalized spin-cone singularities. Given a closed surface equipped with a hyperbolic metric and a contraction map between the universal cover of the surface and the hyperbolic plane, it is possible to construct a compact Anti-de Sitter manifold of dimension 3 as fiber bundle over the surface. We show that, when the surface has hyperbolic metric with conical singular points, the same construction of the non singular case leads to compact Anti-de Sitter manifolds as fiber bundle with singular fibers over the surface. These singular fibers over the singular conical points are locally isometric to what we defined Model for generalized spin-cone singularity. In particular, from the model come out two invariants that allows us to study the compact Anti-de Sitter manifolds of dimension 3 with spin-cone singularities. The last result of this work is about the computation of the volume of these compact Anti-de Sitter manifolds with spin-cone singularities.
In questa tesi, ci occupiamo dello studio delle varietà anti-de Sitter compatte di dimensione 3 dotate di singolarità coniche con spin generalizzate. Data una superficie chiusa con metrica iperbolica e una mappa di contrazione tra il rivestimento universale della superficie e il semipiano iperbolico, è possibile costruire una varietà anti-de Sitter compatta di dimensione 3 come fibrato vettoriale con base la superficie iperbolica. Seguendo la stessa costruzione del caso non singolare, mostriamo che, a partire da una superficie equipaggiata di metrica iperbolica con singolarità coniche, è possibile costruire varietà compatte anti-de Sitter come fibrati vettoriali sulla superficie con fibre singolari. Queste fibre singolari sono localmente isometriche al cosiddetto Modello per singolarità conica con spin generalizzata. In particolare, dalla costruzione del modello, vengono fuori due invarianti che permettono di studiare tali varietà anti-de Sitter singolari. L’ultimo risultato trattato riguarda il calcolo del volume delle varietà anti-de Sitter con singolarità di questo tipo.
Compact 3-dimensional Anti-de Sitter manifolds with spin-cone singularities
JANIGRO, AGNESE
2022
Abstract
In this thesis, we study compact Anti-de Sitter manifolds of dimension 3 with generalized spin-cone singularities. Given a closed surface equipped with a hyperbolic metric and a contraction map between the universal cover of the surface and the hyperbolic plane, it is possible to construct a compact Anti-de Sitter manifold of dimension 3 as fiber bundle over the surface. We show that, when the surface has hyperbolic metric with conical singular points, the same construction of the non singular case leads to compact Anti-de Sitter manifolds as fiber bundle with singular fibers over the surface. These singular fibers over the singular conical points are locally isometric to what we defined Model for generalized spin-cone singularity. In particular, from the model come out two invariants that allows us to study the compact Anti-de Sitter manifolds of dimension 3 with spin-cone singularities. The last result of this work is about the computation of the volume of these compact Anti-de Sitter manifolds with spin-cone singularities.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_847621.pdf
accesso aperto
Dimensione
765.72 kB
Formato
Adobe PDF
|
765.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/170501
URN:NBN:IT:UNIMIB-170501