In this thesis we discuss how, in the context of knot theory, the classifying space of a knot group for the family of meridians arises naturally. We provide an explicit construction of a model for that space, which is particularly nice in the case of a prime knot. We then show that this classifying space controls the behaviour of the finite branched coverings of the knot. We present a 9-term exact sequence for knot groups that strongly resembles the Poitou-Tate exact sequence for algebraic number fields. Finally, we show that the homology of the classifying space behaves towards the former sequence as Shafarevich groups do towards the latter.

Classifying spaces for knots: new bridges between knot theory and algebraic number theory

PASINI, FEDERICO WILLIAM
2016

Abstract

In this thesis we discuss how, in the context of knot theory, the classifying space of a knot group for the family of meridians arises naturally. We provide an explicit construction of a model for that space, which is particularly nice in the case of a prime knot. We then show that this classifying space controls the behaviour of the finite branched coverings of the knot. We present a 9-term exact sequence for knot groups that strongly resembles the Poitou-Tate exact sequence for algebraic number fields. Finally, we show that the homology of the classifying space behaves towards the former sequence as Shafarevich groups do towards the latter.
13-set-2016
Inglese
WEIGEL, THOMAS STEFAN
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_712909.pdf

accesso aperto

Dimensione 758.91 kB
Formato Adobe PDF
758.91 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/172214
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-172214