i) Geochemical heterogeneity of the lithosphere beneath El Hierro: Geochemical studies of ocean island basalts (OIB) offer primary means for understanding mantle heterogeneity with OIB Sr–Nd–Pb isotope systematics defining mantle components with long-term (>1 Ga) incompatible element enrichment relative to depleted mid-ocean ridge basalt source mantle. Previous studies reported radiogenic isotope data in alkali-basalts from La Palma and El Hierro, and more generally for the Canary Islands. Data collected from petrography, Raman microspectroscopy and mass spectroscopy characterization of mantle xenoliths rocks allow to better delineate geochemical and petrological characteristics of the lithospheric mantle beneath El Hierro in the frame of existing models for the genesis of volcanism. Sample analysed were one spinel harzburgite and one dunite. Petrography characterization allow to investigate an early association of melt/fluid inclusions containing dominantly carbonate/sulfate/silicate glass, evolving to carbonate, sulfate, phosphate, spinel aggregates, and identifies a mixture gas of CO2±N2 trapped. The investigation about the halogens in fluid inclusions has performed by irradiating samples with neutrons and measuring artificial noble gas isotope anomalies in a noble gas mass spectrometer (mass spectroscopy-Noble Gas Method). Br/Cl, I/Cl and Ba/Br ratio have been calculated. The halogen patterns obtained in fluid inclusions are distinct from MORB/OIB. Their Br/Cl ratio is lower by ca. 30%, and the I/Cl ratio higher by a factor of at least 30, than what is presently considered the “typical" oceanic basalt”. The data support the proposed geochemical anomaly of the upper mantle beneath the Canary Islands, relative to the "typical" oceanic lithospheric mantle. This anomaly could have been induced by metasomatic fluids originating from portions of recycled old oceanic crust at lithospheric depths. This may constrain future models that attempt to characterise the processes giving rise to the metasomatising fluids in the lithospheric mantle. ii) Magma plumbing system beneath El Hierro Island. Geothermobarometry of fluid inclusions combined with petrological characterization of mantle xenoliths rocks allows to define the depths and conditions of magma storage, and to propose a magma plumbing system for the Rift volcanism activity (158-present) of El Hierro island. Ultramafic xenoliths were collected in a lava flow El Julan cliff valley. Petrographic studies allow to classify peridotites in type I olivine-orthopyroxene-spinel series, with texture from protogranular to porphyroclastic. For 16 among the best preserved samples modal compositions have been performed. Eight peridotites were analyzed for mineral phase composition by electron microprobe analyses (WDS). Based on mineral chemistry, geobarometry of spinel lherzolite, and spinel harzburgite equilibration at lithospheric depths has been calculated using K&B barometer. Pressures are defined from 1.5 to 2.0 GPa. The geo-thermometers by We and B&K provide the presence of two groups of xenoliths with different equilibrium temperature: LT-type T=800–950 °C and HT-type T=900–1100 °C. Two fluid inclusions groups have been observed: i) Type I, early multiphase CO2+N2-rich fluid inclusions, trapped prior to the ascent of the host xenoliths; ii) Type II, late pure CO2 fluid inclusions trapped during the ascent into the host magma. From the data obtained I propose a model where the eruptive dynamics originate from a vertically stacked reservoir in the lithosphere, which has been identified from 22–36 km depth and followed by local magma accumulation at crustal levels. The results we obtained have also been compared with the dynamics of magma ascent of the last eruption of 2011-2012 of the island, in order to understand whether the magma plumbing system beneath El Hierro island was involved during the last 158 ka.
i) L’eterogeneità geochimica della litosfera al di sotto di El Hierro Studi geochimica dei basalti di isola oceanica (OIB) offrono I mezzi principali per la comprensione dell’etogeneità del mantello attraverso la segnatura di isotopi di Sr-Nd-Pb a lungo termine (> 1 Ga) e definiscono i relativi arricchimenti di elementi incompatibili dei basalti medio oceanici. Precedenti studi riportano dati relativi a isotopi radiogenici per basalti alcalini delle isole di La Palma ed El Hierro, e più in generale delle isole Canarie. I dati raccolti con caratterizzazione petrografica, spettroscopia Raman e spettroscopia di massa per le xenoliti di mantello, permettono di delineare le caratteristiche geochimiche e petrologiche del mantello litosferico di El Hierro nella visione dei modelli esistenti per la genesi del vulcanismo. Una harzburgite ed una dunite sono state analizzate. La petrografia ha permesso di investigare una associazione precoce di melt/inclusioni fluide contenenti carbonati/solfati/vetri silicatici evoluti ad aggregati di carbonati, solfati, fosfati e spinelli, e di caratterizzare una fase gassosa mista di CO2±N2. La caratterizzazione degli alogeni nelle inclusioni fluide è stata fatte tramite irradiazione dei campioni e misurando le anomalie degli isotopi dei gas nobili con uno spettrometro di massa (mass spectroscopy-Noble Gas Method). I rapporti di Br/Cl, I/Cl e Ba/Br sono stati calcolati, e si distinguono dai rapporti usuali di MORB/OIB. Il rapporto Br/Cl è più basso di circa il 30% e quello I/Cl è più alto di almeno 30 volte rispetto a quelli che sono considerati i tipici basalti oceanici. I dati supportano l’anomalia geochimica proposta per il mantello superiore al di sotto delle Isole Canarie, relativi alla “tipicità” del mantello litosferico. Questa anomalia potrebbe essere stata indotta da fluidi metasomatici che si sono originati da porzioni di vecchia crosta oceanica riciclata a profondità litosferiche. Questi dati possono aiutare nell’elaborazione di futuri modelli caratterizzanti i processi che originano i fluidi metasomatici nel mantello. ii) Il sistema di alimentazione dell’isola di El Hierro La geo-termobarometria delle inclusioni fluidi e la caratterizazione petrologica di rocce xenolitiche di mantello permettono di definire profondità e stazionamenti del magma e di proporre un modello caratterizzante il sistema di alimentazione della fase attività di Rift Volcanism (158 ka-presente) dell’isola di El Hierro. Xenoliti ultramafiche sono state campionate in una colata di lava nella scogliera della valle di El Julan. Gli studi petrografici hanno caratterizzato le peridotiti in “type I olivine-orthopyroxene-spinel series”, con tessiture da protogranulari a porfiroblastiche. Per sedici campioni è stata definita la composizione modale; otto sono stati analizzati per la composizione delle fasi minerali con microsonda WDS. Sulla base della chimica dei minerali sono state calcolate le condizioni di pressione di equilibrio a profondità litosferiche per le rocce lherzoliti e harzburgiti a spinello. Utilizzando il barometro K&B sono state ottenute pressioni tra 1.5 e 2.0 GPa. Utilizzando i termometri di We e B&K sono state definite differenti temperature di equilibrio per due gruppi di campioni: LT-type T=800–950 °C e HT-type T=900–1100 °C. Due differenti tipologie di inclusioni fluide sono state identificate: i) Type I, early multiphase CO2+N2ntrappolate prima della risalita nel magma e ii) Type II, late pure CO2 intrappolate durante la risalita. Sulla base di questi dati viene proposto un modello di risalita verticale attraverso piccolo porzioni di magma, identificato tra 22 e 36 km e seguito da un più superficiale livello di stazionamento nella crosta. I risultati ottenuti sono stati confrontati con le dinamiche dell’ultima eruzione del 2011-2012, al fine di comprendere se il sistema di alimentazione dell’ isola di El Hierro si è evoluto durante gli ultimi 158 ka.
“THE MAGMA PLUMBING SYSTEM OF THE RIFT VOLCANISM ACTIVITY IN EL HIERRO, CANARY ISLANDS: FLUID INCLUSION, AND PETROLOGICAL STUDIES”
OGLIALORO, EDUARDO
2017
Abstract
i) Geochemical heterogeneity of the lithosphere beneath El Hierro: Geochemical studies of ocean island basalts (OIB) offer primary means for understanding mantle heterogeneity with OIB Sr–Nd–Pb isotope systematics defining mantle components with long-term (>1 Ga) incompatible element enrichment relative to depleted mid-ocean ridge basalt source mantle. Previous studies reported radiogenic isotope data in alkali-basalts from La Palma and El Hierro, and more generally for the Canary Islands. Data collected from petrography, Raman microspectroscopy and mass spectroscopy characterization of mantle xenoliths rocks allow to better delineate geochemical and petrological characteristics of the lithospheric mantle beneath El Hierro in the frame of existing models for the genesis of volcanism. Sample analysed were one spinel harzburgite and one dunite. Petrography characterization allow to investigate an early association of melt/fluid inclusions containing dominantly carbonate/sulfate/silicate glass, evolving to carbonate, sulfate, phosphate, spinel aggregates, and identifies a mixture gas of CO2±N2 trapped. The investigation about the halogens in fluid inclusions has performed by irradiating samples with neutrons and measuring artificial noble gas isotope anomalies in a noble gas mass spectrometer (mass spectroscopy-Noble Gas Method). Br/Cl, I/Cl and Ba/Br ratio have been calculated. The halogen patterns obtained in fluid inclusions are distinct from MORB/OIB. Their Br/Cl ratio is lower by ca. 30%, and the I/Cl ratio higher by a factor of at least 30, than what is presently considered the “typical" oceanic basalt”. The data support the proposed geochemical anomaly of the upper mantle beneath the Canary Islands, relative to the "typical" oceanic lithospheric mantle. This anomaly could have been induced by metasomatic fluids originating from portions of recycled old oceanic crust at lithospheric depths. This may constrain future models that attempt to characterise the processes giving rise to the metasomatising fluids in the lithospheric mantle. ii) Magma plumbing system beneath El Hierro Island. Geothermobarometry of fluid inclusions combined with petrological characterization of mantle xenoliths rocks allows to define the depths and conditions of magma storage, and to propose a magma plumbing system for the Rift volcanism activity (158-present) of El Hierro island. Ultramafic xenoliths were collected in a lava flow El Julan cliff valley. Petrographic studies allow to classify peridotites in type I olivine-orthopyroxene-spinel series, with texture from protogranular to porphyroclastic. For 16 among the best preserved samples modal compositions have been performed. Eight peridotites were analyzed for mineral phase composition by electron microprobe analyses (WDS). Based on mineral chemistry, geobarometry of spinel lherzolite, and spinel harzburgite equilibration at lithospheric depths has been calculated using K&B barometer. Pressures are defined from 1.5 to 2.0 GPa. The geo-thermometers by We and B&K provide the presence of two groups of xenoliths with different equilibrium temperature: LT-type T=800–950 °C and HT-type T=900–1100 °C. Two fluid inclusions groups have been observed: i) Type I, early multiphase CO2+N2-rich fluid inclusions, trapped prior to the ascent of the host xenoliths; ii) Type II, late pure CO2 fluid inclusions trapped during the ascent into the host magma. From the data obtained I propose a model where the eruptive dynamics originate from a vertically stacked reservoir in the lithosphere, which has been identified from 22–36 km depth and followed by local magma accumulation at crustal levels. The results we obtained have also been compared with the dynamics of magma ascent of the last eruption of 2011-2012 of the island, in order to understand whether the magma plumbing system beneath El Hierro island was involved during the last 158 ka.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_760344.pdf
accesso aperto
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/173302
URN:NBN:IT:UNIMIB-173302