Operational risk (OpRisk) emerges as a pivotal non-financial concern with far-reaching implications for financial institutions. Departing from conventional regulatory tasks encompassing data collection, capital requirement calculations, and report generation for managerial decisions, OpRisk functions are now actively pursuing proactive strategies to forestall or alleviate risk impacts. For instance, artificial intelligence techniques, increasingly integral for managerial insights, are now employed to extract additional information from data. This study advances the application of text analysis techniques, a foundational element of Natural Language Processing, to OpRisk event descriptions. The present work introduces a structured workflow for the application of text analysis techniques to the OpRisk event descriptions to identify managerial clusters (more granular than regulatory categories) representing the root causes of the underlying OpRisks. However, these potent approaches exhibit limitations in influencing the impact of future loss events. In response, this research delves into the augmentation of traditional data sources, exploring alternative channels to identify potential events in their nascent stages and proactively manage their impact. An innovative facet involves the analysis of relevant tweets from X (formerly Twitter) for continuous scanning of the changing risk environment, aiming to detect early warnings about new types of potentially risky events. We demonstrate the seamless integration of these diverse methodologies into a comprehensive approach to OpRisk management, fostering a more holistic, forward-looking, and adaptive risk mitigation strategy.

Il rischio operativo (OpRisk) emerge come una tematica non finanziaria fondamentale con implicazioni di vasta portata per le istituzioni finanziarie. Allontanandosi dai compiti normativi convenzionali che comprendono la raccolta dei dati, il calcolo dei requisiti patrimoniali e la generazione di report per le decisioni manageriali, le funzioni di OpRisk stanno ora perseguendo attivamente strategie proattive per prevenire o alleviare gli impatti del rischio. Ad esempio, le tecniche di intelligenza artificiale, sempre più importanti per gli insight manageriali, vengono ora impiegate per estrarre informazioni aggiuntive dai dati. Questo studio prevede l'applicazione delle tecniche di analisi del testo, un elemento fondamentale dell'elaborazione del linguaggio naturale, alle descrizioni degli eventi OpRisk. Il presente lavoro introduce un flusso strutturato per l'applicazione di tecniche di analisi del testo alle descrizioni degli eventi OpRisk per identificare cluster gestionali (più granulari rispetto alle categorie normative) che rappresentano le cause principali degli OpRisk sottostanti. Tuttavia, questi potenti approcci presentano limitazioni nell’influenzare l’impatto di futuri eventi di perdita. Come risposta, questa ricerca approfondisce l’integrazione delle fonti di dati tradizionali, esplorando canali alternativi per identificare potenziali eventi nelle loro prime fasi e gestirne in modo proattivo l’impatto. Un aspetto innovativo prevede l’analisi dei tweet rilevanti di X (ex Twitter) per la scansione continua del contesto di rischio in evoluzione, con l’obiettivo di rilevare early warning su nuovi tipi di eventi potenzialmente rischiosi. Dimostriamo la perfetta integrazione di queste diverse metodologie in un approccio completo alla gestione di OpRisk, promuovendo una strategia di mitigazione del rischio più olistica, lungimirante e adattiva.

Holistic Approach to Operational Risk: Issues, Solutions, and Decision Making

PIACENZA, FABIO
2024

Abstract

Operational risk (OpRisk) emerges as a pivotal non-financial concern with far-reaching implications for financial institutions. Departing from conventional regulatory tasks encompassing data collection, capital requirement calculations, and report generation for managerial decisions, OpRisk functions are now actively pursuing proactive strategies to forestall or alleviate risk impacts. For instance, artificial intelligence techniques, increasingly integral for managerial insights, are now employed to extract additional information from data. This study advances the application of text analysis techniques, a foundational element of Natural Language Processing, to OpRisk event descriptions. The present work introduces a structured workflow for the application of text analysis techniques to the OpRisk event descriptions to identify managerial clusters (more granular than regulatory categories) representing the root causes of the underlying OpRisks. However, these potent approaches exhibit limitations in influencing the impact of future loss events. In response, this research delves into the augmentation of traditional data sources, exploring alternative channels to identify potential events in their nascent stages and proactively manage their impact. An innovative facet involves the analysis of relevant tweets from X (formerly Twitter) for continuous scanning of the changing risk environment, aiming to detect early warnings about new types of potentially risky events. We demonstrate the seamless integration of these diverse methodologies into a comprehensive approach to OpRisk management, fostering a more holistic, forward-looking, and adaptive risk mitigation strategy.
30-mag-2024
Italiano
Il rischio operativo (OpRisk) emerge come una tematica non finanziaria fondamentale con implicazioni di vasta portata per le istituzioni finanziarie. Allontanandosi dai compiti normativi convenzionali che comprendono la raccolta dei dati, il calcolo dei requisiti patrimoniali e la generazione di report per le decisioni manageriali, le funzioni di OpRisk stanno ora perseguendo attivamente strategie proattive per prevenire o alleviare gli impatti del rischio. Ad esempio, le tecniche di intelligenza artificiale, sempre più importanti per gli insight manageriali, vengono ora impiegate per estrarre informazioni aggiuntive dai dati. Questo studio prevede l'applicazione delle tecniche di analisi del testo, un elemento fondamentale dell'elaborazione del linguaggio naturale, alle descrizioni degli eventi OpRisk. Il presente lavoro introduce un flusso strutturato per l'applicazione di tecniche di analisi del testo alle descrizioni degli eventi OpRisk per identificare cluster gestionali (più granulari rispetto alle categorie normative) che rappresentano le cause principali degli OpRisk sottostanti. Tuttavia, questi potenti approcci presentano limitazioni nell’influenzare l’impatto di futuri eventi di perdita. Come risposta, questa ricerca approfondisce l’integrazione delle fonti di dati tradizionali, esplorando canali alternativi per identificare potenziali eventi nelle loro prime fasi e gestirne in modo proattivo l’impatto. Un aspetto innovativo prevede l’analisi dei tweet rilevanti di X (ex Twitter) per la scansione continua del contesto di rischio in evoluzione, con l’obiettivo di rilevare early warning su nuovi tipi di eventi potenzialmente rischiosi. Dimostriamo la perfetta integrazione di queste diverse metodologie in un approccio completo alla gestione di OpRisk, promuovendo una strategia di mitigazione del rischio più olistica, lungimirante e adattiva.
clustering; early warning; operational risk,; text analysis; tweets
GRESELIN, FRANCESCA
File in questo prodotto:
File Dimensione Formato  
phd_unimib_854276.pdf

accesso aperto

Dimensione 13.69 MB
Formato Adobe PDF
13.69 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/173557
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-173557