We aim at generalizing the celebrated portfolio optimization problem "à la Merton", where the asset evolution is steered by a self-exciting jump-diffusion process. We first define the rigorous mathematical framework needed to introduce the stochastic optimal control problem we are interesting in. Then, we provide a proof for a specific version of the Dynamic Programming Principle (DPP) with respect to the general class of self-exciting processes under study. After, we state the Hamilton-Jacobi-Bellman (HJB) equation, whose solution gives the value function for the corresponding optimal control problem. The resulting HJB equation takes the form of a Partial-Integro Differential Equation (PIDE), for which we prove both existence and uniqueness for the solution in the viscosity sense. We further derive a suitable numerical scheme to solve the HJB equation corresponding to the portfolio optimizationproblem. To this end, we also provide a detailed study of solution dependence on the parameters of the problem. The analysis is performed by calibrating the model on ENI asset levels during the COVID-19 worldwide breakout. In particular, the calibration routine is based on a sophisticated Sequential Monte Carlo algorithm.

Portfolio optimization in presence of a self-exciting jump process: from theory to practice

Veronese, Andrea
2022

Abstract

We aim at generalizing the celebrated portfolio optimization problem "à la Merton", where the asset evolution is steered by a self-exciting jump-diffusion process. We first define the rigorous mathematical framework needed to introduce the stochastic optimal control problem we are interesting in. Then, we provide a proof for a specific version of the Dynamic Programming Principle (DPP) with respect to the general class of self-exciting processes under study. After, we state the Hamilton-Jacobi-Bellman (HJB) equation, whose solution gives the value function for the corresponding optimal control problem. The resulting HJB equation takes the form of a Partial-Integro Differential Equation (PIDE), for which we prove both existence and uniqueness for the solution in the viscosity sense. We further derive a suitable numerical scheme to solve the HJB equation corresponding to the portfolio optimizationproblem. To this end, we also provide a detailed study of solution dependence on the parameters of the problem. The analysis is performed by calibrating the model on ENI asset levels during the COVID-19 worldwide breakout. In particular, the calibration routine is based on a sophisticated Sequential Monte Carlo algorithm.
27-apr-2022
Inglese
Di Persio, Luca
Università degli studi di Trento
TRENTO
92
File in questo prodotto:
File Dimensione Formato  
PhDThesis.pdf

Open Access dal 23/04/2023

Dimensione 5.71 MB
Formato Adobe PDF
5.71 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/175974
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-175974