Torsion pairs were introduced by Dickson in 1966 as a generalization of the concept of torsion abelian group to arbitrary abelian categories. Using torsion pairs, we can divide complex abelian categories in smaller parts which are easier to understand. In this thesis we discuss torsion pairs in the category of modules over a finite-dimensional algebra, in particular we explore the relation between torsion pairs in the category of all modules and torsion pairs in the category of finite-dimensional modules. In the second chapter of the thesis, we present the analogue of a classical theorem of Auslander in the context of τ-tilting theory: for a finite-dimensional algebra the number of torsion pairs in the category of finite-dimensional modules is finite if and only if every brick over such algebra is finite- dimensional. In the third chapter, we revisit the Ingalls-Thomas correspondences between torsion pairs and wide subcategories in the context of large torsion pairs. We provide a nice description of the resulting wide subcategories and show that all such subcategories are coreflective. In the final chapter, we describe mutation of cosilting modules in terms of an operation on the Ziegler spectrum of the algebra.

On large and small torsion pairs

Sentieri, Francesco
2022

Abstract

Torsion pairs were introduced by Dickson in 1966 as a generalization of the concept of torsion abelian group to arbitrary abelian categories. Using torsion pairs, we can divide complex abelian categories in smaller parts which are easier to understand. In this thesis we discuss torsion pairs in the category of modules over a finite-dimensional algebra, in particular we explore the relation between torsion pairs in the category of all modules and torsion pairs in the category of finite-dimensional modules. In the second chapter of the thesis, we present the analogue of a classical theorem of Auslander in the context of τ-tilting theory: for a finite-dimensional algebra the number of torsion pairs in the category of finite-dimensional modules is finite if and only if every brick over such algebra is finite- dimensional. In the third chapter, we revisit the Ingalls-Thomas correspondences between torsion pairs and wide subcategories in the context of large torsion pairs. We provide a nice description of the resulting wide subcategories and show that all such subcategories are coreflective. In the final chapter, we describe mutation of cosilting modules in terms of an operation on the Ziegler spectrum of the algebra.
30-giu-2022
Inglese
Università degli studi di Trento
TRENTO
101
File in questo prodotto:
File Dimensione Formato  
On large and small torsion pairs.pdf

accesso aperto

Dimensione 843.29 kB
Formato Adobe PDF
843.29 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176503
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-176503