This thesis is concerned with effects of spin polarization in neutron stars. In particular, we focus on static and dynamic properties of dense neutron matter. We use two different kind of potential to perform our studies: the phenomenological two-body Argonne V$8$' potential plus the three-body Urbana IX force and a modern local version of chiral effective potential up to next-to-next-to-leading order (N$2$LO). Estimates are calculated for the neutrino mean free path in partially spin-polarized neutron matter starting from Quantum Monte Carlo (QMC) simulations and using mean-field approaches to compute the response function in the longitudinal and transverse channel. We also compute magnetic susceptibility of dense neutron matter from accurate QMC calculations of partially spin-polarized systems. Twist-averaged boundary conditions (TABC) have been implemented to reduce finite-size effects. In the results, we also account for the theoretical uncertainty coming from the chiral expansion scheme. These results may play a role in studying high-energy phenomena such as neutron star mergers and supernova explosions, although they have been computed only at T$=0$ K.

Spin polarization effects in neutron stars

Riz, Luca
2020

Abstract

This thesis is concerned with effects of spin polarization in neutron stars. In particular, we focus on static and dynamic properties of dense neutron matter. We use two different kind of potential to perform our studies: the phenomenological two-body Argonne V$8$' potential plus the three-body Urbana IX force and a modern local version of chiral effective potential up to next-to-next-to-leading order (N$2$LO). Estimates are calculated for the neutrino mean free path in partially spin-polarized neutron matter starting from Quantum Monte Carlo (QMC) simulations and using mean-field approaches to compute the response function in the longitudinal and transverse channel. We also compute magnetic susceptibility of dense neutron matter from accurate QMC calculations of partially spin-polarized systems. Twist-averaged boundary conditions (TABC) have been implemented to reduce finite-size effects. In the results, we also account for the theoretical uncertainty coming from the chiral expansion scheme. These results may play a role in studying high-energy phenomena such as neutron star mergers and supernova explosions, although they have been computed only at T$=0$ K.
9-mar-2020
Inglese
Pederiva, Francesco
Università degli studi di Trento
116
File in questo prodotto:
File Dimensione Formato  
thesis.pdf

accesso aperto

Dimensione 19.91 MB
Formato Adobe PDF
19.91 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/176891
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-176891