In this thesis, second order optical nonlinearities in silicon waveguides are studied. At the beginning, the strained silicon platform is investigated in detail. In recent years, second order nonlinearities have been demonstrated on this platform. However, the origin of these nonlinearities was not clear. This thesis offers a clear answer to this question, demonstrating that this nonlinearity does not originate on the applied strain, but on the presence of trapped charges that induce a static electric field inside the waveguide. Based on this outcome, a way to induce larger electric fields in silicon waveguide is studied. Using lateral p-n junctions, strong electric fields are introduced in the waveguides, demonstrating both electro-optic effects and second-harmonic generation. These results, together with a detailed modeling of the system, pave the way through the demonstration of spontaneous parametric down-conversion in silicon.

Second order nonlinearities in silicon photonics

Castellan, Claudio
2019

Abstract

In this thesis, second order optical nonlinearities in silicon waveguides are studied. At the beginning, the strained silicon platform is investigated in detail. In recent years, second order nonlinearities have been demonstrated on this platform. However, the origin of these nonlinearities was not clear. This thesis offers a clear answer to this question, demonstrating that this nonlinearity does not originate on the applied strain, but on the presence of trapped charges that induce a static electric field inside the waveguide. Based on this outcome, a way to induce larger electric fields in silicon waveguide is studied. Using lateral p-n junctions, strong electric fields are introduced in the waveguides, demonstrating both electro-optic effects and second-harmonic generation. These results, together with a detailed modeling of the system, pave the way through the demonstration of spontaneous parametric down-conversion in silicon.
2019
Inglese
Pavesi, Lorenzo
Università degli studi di Trento
TRENTO
223
File in questo prodotto:
File Dimensione Formato  
Disclaimer_Signed.pdf

accesso solo da BNCF e BNCR

Dimensione 467.65 kB
Formato Adobe PDF
467.65 kB Adobe PDF
Thesis_ClaudioCastellan_V2.4.pdf

accesso aperto

Dimensione 25.15 MB
Formato Adobe PDF
25.15 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/178481
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-178481