SERINC5 is a restriction factor for retroviruses, antagonized by Nef of primate lentiviruses, by glycoGag of Moloney Murine Leukaemia Virus (MoMLV) and by S2 of Equine Infectious Anaemia virus (EIAV). In addition, SERINC5 sensitizes HIV-1 to neutralizing antibodies (nAbs) targeting the MPER in gp41. However, since the identification of SERINC5 as an inhibitor of retrovirus infectivity, many features of the host factor await clarification, notably the molecular mechanisms of restriction and viral counteraction. Furthermore, SERINC5 cellular role beyond restriction is still obscure. This thesis explores multiple aspects of the mutual antagonism governing the SERINC5 interplay with retroviruses. We first describe a contribution towards the determination of the structure of SERINC5 and the identification of the determinants crucial for antiviral activity, virus sensitization to neutralization and counteraction by retroviruses. By performing a structure-based mutagenesis screening, we identified SERINC5 ECL3, ECL5 and the interface between subdomains as regions essential for inhibition of HIV-1 infectivity and virus sensitization to 4E10 and 2F5 nAbs. The simultaneous impairment of both SERINC5 antiviral effects indicates that they are mechanistically related and support the hypothesis of a SERINC5-mediated impairment of the envelope glycoproteins. We included a comparative analysis of the antiviral activity of human SERINC paralogs and their sensitivity to retroviral counteraction. It has been previously established that SERINC3 inhibits HIV-1 infectivity less potently than SERINC5, while SERINC2 has no antiviral effects. We report here that similarly to SERINC3, SERINC1 is endowed with a modest antiviral activity; in contrast, SERINC4 severely inhibits HIV-1 infectivity, despite being poorly expressed. Irrespectively of their antiretroviral potency, all SERINC proteins are incorporated into virus particles. Interestingly, we observed that virion-associated SERINC2 is specifically cleaved by the viral protease, but proteolysis does not explain the lack of antiretroviral effects. Furthermore, SERINC5 and SERINC2 have different glycomic profiles, but diverse post-translational modification is irrelevant for their opposite activity against HIV-1. In addition, we reported that human SERINCs are differently targeted by retroviral counteracting factors, with SERINC5 being the paralog most efficiently downregulated, while SERINC1 being completely resistant. A cysteines cluster within ICL4 emerged as the major determinant of SERINC5 responsiveness to different nef alleles, while it proved irrelevant for internalization by MoMLV glycoGag and EIAV S2, indicating that diverse retroviral counteractors likely target the host factor differently. Though SERINC5 ICL4 harbours multiple motifs governing SERINC5 sensitivity to antagonization, insertion of this loop within SERINC2 was not enough to transfer susceptibility to Nef activity, suggesting that the overall conformation of the protein is essential for downregulation by Nef. Importantly, the cysteine stretch within ICL4 is palmitoylated, suggesting that this modification may be important for counteraction by the lentiviral factor. SERINC5 and CD4 downregulation by Nef are functionally related, as they both require AP-2 mediated endocytosis. However, regions in Nef selectively governing SERINC5 internalization are unknown. We reported here that Phe90 within Nef αA-helix genetically uncouples the activities on SERINC5 and CD4, being selectively involved in SERINC5 downregulation. In parallel, we explored SERINC5 antagonization by different glycoGag alleles and observed that the ability to target the host factor is not conserved across divergent γ-retroviruses. Finally, we observed that HIV-1 may evade SERINC5 restriction by direct cell-to-cell infection, suggesting that the host factor may have a broader role in retroviral spreading, requiring the evolution and the conservation of active viral counteraction. To this end, we preliminary investigated a positive contribution of SERINC5 to intracellular signalling.

Antiviral activity and retroviral counteraction of SERINC genes

Bertelli, Cinzia
2021

Abstract

SERINC5 is a restriction factor for retroviruses, antagonized by Nef of primate lentiviruses, by glycoGag of Moloney Murine Leukaemia Virus (MoMLV) and by S2 of Equine Infectious Anaemia virus (EIAV). In addition, SERINC5 sensitizes HIV-1 to neutralizing antibodies (nAbs) targeting the MPER in gp41. However, since the identification of SERINC5 as an inhibitor of retrovirus infectivity, many features of the host factor await clarification, notably the molecular mechanisms of restriction and viral counteraction. Furthermore, SERINC5 cellular role beyond restriction is still obscure. This thesis explores multiple aspects of the mutual antagonism governing the SERINC5 interplay with retroviruses. We first describe a contribution towards the determination of the structure of SERINC5 and the identification of the determinants crucial for antiviral activity, virus sensitization to neutralization and counteraction by retroviruses. By performing a structure-based mutagenesis screening, we identified SERINC5 ECL3, ECL5 and the interface between subdomains as regions essential for inhibition of HIV-1 infectivity and virus sensitization to 4E10 and 2F5 nAbs. The simultaneous impairment of both SERINC5 antiviral effects indicates that they are mechanistically related and support the hypothesis of a SERINC5-mediated impairment of the envelope glycoproteins. We included a comparative analysis of the antiviral activity of human SERINC paralogs and their sensitivity to retroviral counteraction. It has been previously established that SERINC3 inhibits HIV-1 infectivity less potently than SERINC5, while SERINC2 has no antiviral effects. We report here that similarly to SERINC3, SERINC1 is endowed with a modest antiviral activity; in contrast, SERINC4 severely inhibits HIV-1 infectivity, despite being poorly expressed. Irrespectively of their antiretroviral potency, all SERINC proteins are incorporated into virus particles. Interestingly, we observed that virion-associated SERINC2 is specifically cleaved by the viral protease, but proteolysis does not explain the lack of antiretroviral effects. Furthermore, SERINC5 and SERINC2 have different glycomic profiles, but diverse post-translational modification is irrelevant for their opposite activity against HIV-1. In addition, we reported that human SERINCs are differently targeted by retroviral counteracting factors, with SERINC5 being the paralog most efficiently downregulated, while SERINC1 being completely resistant. A cysteines cluster within ICL4 emerged as the major determinant of SERINC5 responsiveness to different nef alleles, while it proved irrelevant for internalization by MoMLV glycoGag and EIAV S2, indicating that diverse retroviral counteractors likely target the host factor differently. Though SERINC5 ICL4 harbours multiple motifs governing SERINC5 sensitivity to antagonization, insertion of this loop within SERINC2 was not enough to transfer susceptibility to Nef activity, suggesting that the overall conformation of the protein is essential for downregulation by Nef. Importantly, the cysteine stretch within ICL4 is palmitoylated, suggesting that this modification may be important for counteraction by the lentiviral factor. SERINC5 and CD4 downregulation by Nef are functionally related, as they both require AP-2 mediated endocytosis. However, regions in Nef selectively governing SERINC5 internalization are unknown. We reported here that Phe90 within Nef αA-helix genetically uncouples the activities on SERINC5 and CD4, being selectively involved in SERINC5 downregulation. In parallel, we explored SERINC5 antagonization by different glycoGag alleles and observed that the ability to target the host factor is not conserved across divergent γ-retroviruses. Finally, we observed that HIV-1 may evade SERINC5 restriction by direct cell-to-cell infection, suggesting that the host factor may have a broader role in retroviral spreading, requiring the evolution and the conservation of active viral counteraction. To this end, we preliminary investigated a positive contribution of SERINC5 to intracellular signalling.
4-nov-2021
Inglese
Pizzato, Massimo
Università degli studi di Trento
TRENTO
333
File in questo prodotto:
File Dimensione Formato  
Bertelli_C_thesis.pdf

Open Access dal 05/11/2023

Dimensione 18.65 MB
Formato Adobe PDF
18.65 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/179163
Il codice NBN di questa tesi è URN:NBN:IT:UNITN-179163