The emergence of General Purpose Technologies (GPTs) in the green technology domains is a fundamental process not only for environmental, but also for socio-economic reasons The development of eco-innovations represents an important step towards the reduction of the environmental degradation and contributes to the technological progress, while creating economic benefits. GPTs are technological solutions that can be applied to different markets and industries and have been identified as one of the main engines for growth. They are characterized by three features: pervasive-ness, scope for improvement, and innovation spawning. The development of eco-innovations contributes substantially to trigger a process of sustainable growth, which is an extremely urgent policy concern in different countries. For the most part, this is because eco-innovations are pervasive, as they span a large number of sectors and technological domains. For this reason, the development of green technologies that bring benefits to consumers and firms in different industries and technological domains is particularly important. Green innovations are more complex and more novel and have a larger and more pervasive impact on subsequent developments than non-green innovation. This confirms the idea that both the novelty and the reliance on diverse combinations of knowledge components enhance the capability of generating spill-overs to future innovation. However, not much is known about the combination of green and non-green knowledge in driving the emergence of green innovations. Several research endeavours in patent-based green technology pervasiveness have targeted SNA models to construct, investigate and visualize through the network graphs, where patents codes or technology keywords can be represented as nodes and edge or link between nodes denote connections between technologies. Patent citation has experienced a dramatic increase in social science research as it indicates that the citing patent conveys part of existing knowledge in the cited patent. The thesis investigates the knowledge–base of green patents in order to understand to what extent they build upon a variety of technologies and, most explicitly, upon technologies that are not only “green”. We explore the social network analysis model and visualization approach to extract the most influencing or central technologies from the technologies patents’ network and to understand the influence dynamics of ‘central nodes’ which changes over the time. The presented methodology also aims to identify the most central technologies within green innovations and understand to what extent the role of different “central nodes” changes over time. Finally, the research investigates whether the green innovations are becoming more diversified, i.e. are less and less reliant on green technologies and more reliant on non-green technologies). The descriptive data analysis is not enough to deduct the pervasiveness of green technologies. In order to enhance our research findings, we extract the centrality measures that help us to truly understand the pattern of technological change in the green field and the extent to which green technologies rely upon a differentiated knowledge base. Based upon empirical evidence, we find that green technologies are more central and play a fundamental role in determining the knowledge base of green patents. Results shows that there exist a few green technologies as compare to non-green technologies, exhibiting the actual behavior of influencers network where a few core or hub nodes of green technologies seems to have connections among large peripheries of non-green technologies. We find that green technological classes are increasingly more central in green patents, but their number is much lower than that of non-green classes, suggesting that green innovations emerge out of the combination of a very heterogeneous knowledge base. Moreover, over time we observe an increase over time in non-green technological classes in green patents, even if they are very sparse. Influence dynamism of GPTs exhibits significant increase of non-green technological classes in green pa-tents, even if they are very sparse.
L'emergere di General Purpose Technologies (GPT) nei domini delle tecnologie verdi è un processo fondamentale non solo per ragioni ambientali, ma anche socioeconomiche Lo sviluppo di eco-innovazioni rappresenta un passo importante verso la riduzione del degrado ambientale e contribuisce a il progresso tecnologico, creando vantaggi economici. I GPT sono soluzioni tecnologiche che possono essere applicate a diversi mercati e settori e sono stati identificati come uno dei principali motori di crescita. Sono caratterizzati da tre caratteristiche: pervasività, possibilità di miglioramento e generazione di innovazione. Lo sviluppo di ecoinnovazioni contribuisce in modo sostanziale a innescare un processo di crescita sostenibile, che è una preoccupazione politica estremamente urgente in diversi paesi. Per la maggior parte, questo è dovuto al fatto che le eco-innovazioni sono pervasive, poiché abbracciano un gran numero di settori e domini tecnologici. Per questo motivo, lo sviluppo di tecnologie verdi che portino benefici ai consumatori e alle imprese in diversi settori e domini tecnologici è particolarmente importante. Le innovazioni verdi sono più complesse e più nuove e hanno un impatto più ampio e pervasivo sugli sviluppi successivi rispetto all'innovazione non verde. Ciò conferma l'idea che sia la novità che la dipendenza da diverse combinazioni di componenti della conoscenza aumentano la capacità di generare ricadute sull'innovazione futura. Tuttavia, non si sa molto sulla combinazione di conoscenza verde e non verde nel guidare l'emergere di innovazioni verdi. Diversi sforzi di ricerca sulla pervasività della tecnologia verde basata sui brevetti hanno mirato a modelli SNA per costruire, indagare e visualizzare attraverso i grafici di rete, dove i codici dei brevetti o le parole chiave tecnologiche possono essere rappresentati come nodi e il bordo o il collegamento tra i nodi denotano connessioni tra tecnologie. La citazione del brevetto ha registrato un drammatico aumento nella ricerca nelle scienze sociali in quanto indica che il brevetto citante trasmette parte della conoscenza esistente nel brevetto citato. La tesi indaga la base di conoscenza dei brevetti verdi per capire in che misura si basano su una varietà di tecnologie e, più esplicitamente, su tecnologie non solo “verdi”. Esploriamo il modello di analisi dei social network e l'approccio di visualizzazione per estrarre le tecnologie più influenti o centrali dalla rete dei brevetti tecnologici e per comprendere le dinamiche di influenza dei "nodi centrali" che cambiano nel tempo. La metodologia presentata mira anche a identificare le tecnologie più centrali all'interno delle innovazioni verdi e capire in che misura il ruolo dei diversi "nodi centrali" cambia nel tempo. Infine, la ricerca indaga se le innovazioni verdi stiano diventando sempre più diversificate, ovvero lo sono sempre meno dipendente dalle tecnologie verdi e più dipendente dalle tecnologie non verdi). L'analisi descrittiva dei dati non è sufficiente per dedurre la pervasività delle tecnologie verdi. Al fine di migliorare i nostri risultati di ricerca, estraiamo le misure di centralità che ci aiutano a comprendere veramente il modello del cambiamento tecnologico nel campo verde e la misura in cui le tecnologie verdi si basano su una base di conoscenza differenziata. Sulla base di prove empiriche, troviamo che le tecnologie verdi sono più centrali e svolgono un ruolo fondamentale nel determinare la base di conoscenza dei brevetti verdi. I risultati mostrano che esistono alcune tecnologie verdi rispetto alle tecnologie non verdi, che mostrano il comportamento effettivo della rete di influencer in cui alcuni nodi centrali o hub di tecnologie verdi sembrano avere connessioni tra grandi periferie di tecnologie non verdi. Troviamo che le classi tecnologiche verdi sono sempre più centrali nei brevetti verdi, ma il loro numero è molto inferiore a quello delle classi non verdi, suggerendo che le innovazioni verdi emergono dalla combinazione di una base di conoscenza molto eterogenea. Inoltre, nel tempo si osserva un aumento nel tempo delle classi tecnologiche non green nei brevetti green, anche se molto scarse. Il dinamismo di influenza dei GPT mostra un aumento significativo delle classi tecnologiche non verdi nelle tende verdi, anche se sono molto scarse.
ANALISI DELLA PERVASIVITÀ DEI BREVETTI VERDI. Un quadro visivo per l'esplorazione della rete
Hussain, Ajaz
2021
Abstract
The emergence of General Purpose Technologies (GPTs) in the green technology domains is a fundamental process not only for environmental, but also for socio-economic reasons The development of eco-innovations represents an important step towards the reduction of the environmental degradation and contributes to the technological progress, while creating economic benefits. GPTs are technological solutions that can be applied to different markets and industries and have been identified as one of the main engines for growth. They are characterized by three features: pervasive-ness, scope for improvement, and innovation spawning. The development of eco-innovations contributes substantially to trigger a process of sustainable growth, which is an extremely urgent policy concern in different countries. For the most part, this is because eco-innovations are pervasive, as they span a large number of sectors and technological domains. For this reason, the development of green technologies that bring benefits to consumers and firms in different industries and technological domains is particularly important. Green innovations are more complex and more novel and have a larger and more pervasive impact on subsequent developments than non-green innovation. This confirms the idea that both the novelty and the reliance on diverse combinations of knowledge components enhance the capability of generating spill-overs to future innovation. However, not much is known about the combination of green and non-green knowledge in driving the emergence of green innovations. Several research endeavours in patent-based green technology pervasiveness have targeted SNA models to construct, investigate and visualize through the network graphs, where patents codes or technology keywords can be represented as nodes and edge or link between nodes denote connections between technologies. Patent citation has experienced a dramatic increase in social science research as it indicates that the citing patent conveys part of existing knowledge in the cited patent. The thesis investigates the knowledge–base of green patents in order to understand to what extent they build upon a variety of technologies and, most explicitly, upon technologies that are not only “green”. We explore the social network analysis model and visualization approach to extract the most influencing or central technologies from the technologies patents’ network and to understand the influence dynamics of ‘central nodes’ which changes over the time. The presented methodology also aims to identify the most central technologies within green innovations and understand to what extent the role of different “central nodes” changes over time. Finally, the research investigates whether the green innovations are becoming more diversified, i.e. are less and less reliant on green technologies and more reliant on non-green technologies). The descriptive data analysis is not enough to deduct the pervasiveness of green technologies. In order to enhance our research findings, we extract the centrality measures that help us to truly understand the pattern of technological change in the green field and the extent to which green technologies rely upon a differentiated knowledge base. Based upon empirical evidence, we find that green technologies are more central and play a fundamental role in determining the knowledge base of green patents. Results shows that there exist a few green technologies as compare to non-green technologies, exhibiting the actual behavior of influencers network where a few core or hub nodes of green technologies seems to have connections among large peripheries of non-green technologies. We find that green technological classes are increasingly more central in green patents, but their number is much lower than that of non-green classes, suggesting that green innovations emerge out of the combination of a very heterogeneous knowledge base. Moreover, over time we observe an increase over time in non-green technological classes in green patents, even if they are very sparse. Influence dynamism of GPTs exhibits significant increase of non-green technological classes in green pa-tents, even if they are very sparse.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Ajaz_Hussain.pdf
accesso aperto
Dimensione
3.6 MB
Formato
Adobe PDF
|
3.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/184081
URN:NBN:IT:UNISTRADA-184081