Introduction The 17 Sustainable Development Goals (SDGs), divided into 169 targets, are part of the 2030 Agenda for Sustainable Development, an action program signed in September 2015 by the Governments of the 193 member countries of the United Nations (UN). The SDGs follow up on the results of the Millennium Development Goals (MDGs) and are linked to issues of primary importance for development. They take into account, in a balanced way, the three dimensions of sustainable development (economic, social and environmental dimensions) and aim to end poverty, reduce inequality, tackle climate change and build societies that respect human rights. In society, in business, in the political world and in public opinion, there is a growing awareness of the need to adopt an integrated approach and concrete measures to achieve a socio-economic paradigm shift in order to address the numerous and complex environmental and institutional challenges. Objectives and research questions Starting from these premises, the primary objective of this Thesis was to analyze how New Technologies can contribute to the realization of the SDGs, as well as to investigate the current state of implementation of these highly technological solutions and the possible trajectories of future development. To achieve this aim, this Thesis, starting from a survey literature review on the concepts of sustainability and sustainable development, carried out a historical excursus in order to identify the reasons and circumstances that led to the definition of the SDGs, presenting the objectives to be achieved by 2030. In particular, this Thesis, in order to investigate research trends and identify the contribution of New Technologies to the achievement of the SDGs, asked the following research questions (RQ): 1. Among the various countries, organizations, journals, papers and authors that have contributed to the literature related to New Technologies for achieving the SDGs, who or which are the most influential (RQ1)? 2. How the New Technologies (in particular, Blockchain, Internet of Things and Artificial Intelligence) are contributing and will they be able to contribute to the achievement of the SDGs? (RQ2) In order to respond to RQ1 and, therefore, evaluate the productivity of global research in this field, and examine the trends and international growth of research on this topic, as well as identify the main research interests, a bibliometric analysis was conducted in this Thesis to explore and identify among the various countries, organizations, journals, articles and authors who have contributed to the literature related to new technologies for achieving the SDGs, who or which are the most influential. To provide an answer to RQ2, this Thesis analyzed, in parallel, in chapters 3, 4 and 5, the current and potential contribution of New Technologies, and, in particular, Blockchain, Internet of Things (IoT) and Artificial Intelligence (AI) for the achievement of the SDGs. Each technology and its main applications for achieving the SDGs were presented in each chapter. To better understand the potential of each technology examined, the main projects, carried out and in progress by Community Organizations and International Organizations, have been illustrated and commented on. From the analyzes that were carried out in this Thesis, it was possible to outline an action framework for a correct implementation of each proposed technology and it was possible to define guidelines and policy considerations to identify the most suitable technology solution for specific needs in order to achieve the objectives set by 2030 in the environmental, economic, social and institutional fields, also in light of the new scenarios deriving from COVID-19 and the EU’s commitment through the Next Generation EU. Limitations of existing literature A particularly widespread description of sustainability uses three interconnected pillars (Basiago, 1998; Boyer et al., 2016), dimensions (Stirling, 1999; Mori & Christodoulou, 2012), components (Du Pisani, 2006; Zijp et al., 2015), stool leg (Dawe & Ryan, 2003; Vos, 2007), aspects (Goodland, 1995; Tanguay et al., 2010), perspectives (Brown et al., 1987; Arushanyan et al., 2017), which include economic, social and environmental factors. Although these three pillars have become common throughout literature, they are not universal. Some papers consider additional pillars such as institutional (Spangenberg et al., 2002; Turcu, 2013), cultural (Soini & Birkeland, 2014) and technical ones (Hill & Bowen, 1997). The diagram of the three circles seems to have been conceptualized, for the first time, by Barbier (1987), with particular reference to developing countries. However, the conceptualization of the three pillars seems to be earlier. The same formulation of the three pillars, in fact, precedes Barbier, at least implicitly, as it appears in the “World Conservation Strategy” of the IUCN of 1980, in O’Riordan (1985), in Brown et al. (1987), and in works that precede the language of sustainability, such as Sachs’ discussions on eco-development and the work of Passet (1979). The origins of the three-pillar paradigm have been variously attributed to the Brundtland Report, Agenda 21 and the World Summit on Sustainable Development held in 2002 (Moldan et al., 2012), but none of these documents present a clear picture or an explicit theoretical background. At the beginning of the new millennium, the world leaders of the United Nations have shaped a broad mission to combat poverty in its many dimensions (United Nations, 2015a). This vision, which was translated into the eight Millennium Development Goals (MDGs), remained the global development framework until the definition of Sustainable Development Goals (SDGs). The Millennium Development Goals (MDGs) have given birth to a historical and effective method of global mobilization to achieve numerous social priorities worldwide, highlighting the widespread public concern about poverty, hunger, disease, low school attendance, gender inequality and environmental degradation (Sachs, 2012). After the 2012 summit, a Working Group was set up to develop the Sustainable Development Goals (SDGs) for post-2015, incorporating, in a balanced way, the three dimensions (economic, social and environmental) of sustainable development. The SDGs are based on the previous MDGs but pursue more ambitious objectives, within an Agenda that aims to be transformative and, therefore, capable of making structural changes (Fisher & Fukuda-Parr, 2019). The 2030 Agenda for Sustainable Development is, therefore, an action plan for people, the planet and prosperity and the 17 Goals and 169 targets will stimulate action, in the period between 2015 and 2030, in areas of fundamental importance for humanity and the planet. The 17 objectives analyzed can therefore be grouped into three macro categories: • Social: The following SDGs fall into this category: SDG 2, SDG 3, SDG 4 and SDG 16. Social sustainability is achieved through standards to improve the health and well-being of citizens. This includes all aspects of social wellbeing that embrace health, social inclusion and accessibility. • Economic: The following SDGs fall into this category: SDG 1, SDG 5, SDG 8, SDG 9 and SDG 10. Economic sustainability is achieved through standards to improve international trade, infrastructure quality and to support sustainable business practices. • Environmental: The following SDGs fall into this category: SDG 6, SDG 7, SDG 11, SDG 13, SDG 14 and SDG 15. Environmental sustainability is achieved through standards which, by measuring and reducing greenhouse gases and energy consumption, support environmental management systems. It therefore emerges that the interconnections and the integrated nature of the Sustainable Development Goals are crucial to ensure the achievement of the purpose of the 2030 Agenda (United Nations, 2015b). This implies that the objectives and the effectiveness of the policies aimed at achieving them depend on each other. Implementation efforts that overlook these systemic interdependencies may, in fact, be hardly fit for purpose (Collste et al., 2017). The transformative potential of the 2030 Agenda lies, in fact, in the synergies to be sought between the SDGs (Timko et al., 2018). However, ignoring potential tradeoffs could have unintended consequences that could be potentially negative (Nilsson et al., 2016). Performance and results data provide essential information for monitoring the implementation of the SDGs. However, these data should be complemented by other qualitative assessments of political efforts and other actions promoted in support of these goals (Sachs et al., 2020). Science, Technology and Innovation (STI, as indicated in UN contexts) have been recognized as one of the main drivers of increased productivity and a key long-term lever for economic growth, prosperity and environmental sustainability (Giovannini et al., 2015). In the context of the new Agenda and for the achievement of the SDGs, STI plays an even more central role. First of all, STI have a highly transversal character to achieve the different objectives and sectoral targets. Promoting innovation is part of SDG 9, relating to resilient infrastructures and inclusive and sustainable industrialization. In particular, Target 9.5 elevates the role of research and innovation policy far beyond the STIs, intended as one of the means of implementation. Technology and, consequently, also emerging technologies such as Artificial Intelligence, Big Data, Internet of Things, Blockchain and 5G communications can be accelerators of innovation capable of creating new products, processes and industries and upset the status quo of Information Communication Technology (ICT). However, in the 2030 Agenda and in the SDGs no explicit reference is made to New Technologies and emerging technologies, despite the key role recognized by STIs in achieving the SDGs. The 2030 Agenda affirms, in fact, that ICT, and related technologies, can contribute to substantially increase progress and bridge the digital divide between communities (Wu et al., 2018). Methododolgy To provide an answer to RQ1, this Thesis conducted a bibliometric analysis (chapter 2), in order to assess the productivity of global research in this field, examine the trends and international growth of research on this topic, as well as identify the main research interests. A bibliometric analysis was chosen because, in many research fields, this method is used for the quantitative evaluation of research on academic production (Callon et al., 1991). Furthermore, bibliometric analysis has gained immense popularity in management in recent years (Khan et al., 2021) even if its use in this field is still relatively recent (Donthu et al., 2021). This popularity is attributable to the availability of scientific databases such as Scopus and Web of Science and the interdisciplinary use of bibliometric methodology from information science to management research (Donthu et al., 2021). In this Thesis, the approach of Rowley & Slack (2004) was adopted to carry out a review of the literature. This procedure helps to identify the research topic and future research directions. It takes the form of a five-step process. Both Scopus and Web of Science (WoS), the two most popular bibliographic databases, were initially explored. Due to the improved coverage offered, Scopus was chosen for data collection. The initial search query included “Sustainable Development Goals” and “Blockchain”, “Artificial Intelligence”, “Internet of Things”. The acronyms with the Boolean “OR” operators were also used to obtain the universal set of documents. The initial search resulted in 397 documents. In this research, the thematic area was limited to “Business, Management and Accounting” and “Social Science”, as a result of which 155 documents remained in the output. Furthermore, the search was limited to published articles, articles in press, reviews, in terms of inclusion criteria since they are considered as “certified knowledge” (Ramos-Rodrígue & Ruíz-Navarro, 2004); this resulted in 113 documents. Therefore, only papers in journals were considered and documents such as conference proceedings, theses and book chapters were excluded. Finally, 109 articles remained in the search output after excluding all non-English articles and duplicates. Since the final version of this research is from the beginning of 2022, the dataset was built including the articles up to December 2021. The citations information, bibliographic information, abstracts, keywords and references of these 106 articles were downloaded in a comma separated file (.csv) from Scopus. In this Thesis, the R programming language and the Biblioshiny and VOSviewer software were used to analyze the collected data. VOSviewer was used to graphically display bibliographic data, to identify the top ten most influential authors, journals, countries and articles. This same tool was used to analyze the relationships in the network, through citation analysis, co-citation analysis, co-authorship analysis, bibliographic coupling and co-occurrence analysis. Biblioshiny was used to perform keywords analysis, three-field plot and further analyzes, described in chapter 2. First, the thematic map, tree map, word cloud, and trend topic matrix were obtained using keywords analysis. The three-field plots was created to visualize the interaction between countries, keywords, and journals. Finally, further analyzes provided: annual scientific production graph, country scientific production map, author impact, source impact, and most local cited sources. Results From the analyzes carried out (performance analysis and science mapping) to respond to RQ1 it emerged that: • Research on these topics has gained momentum since 2019, recording an annual growth rate of 131.05%. • The most influential paper is Hughes, L. (2019) with 206 citations. • Out of 423 authors, 237 have at least one publication and 2 citations. • Out of 54 journals, only 9 have at least 2 published articles and at least 2 citations. • As also demonstrated by source clustering, carried out through Bradford’s Law, the core sources are Sustainability and Journal of Cleaner Production. • The country analysis shows that Spain is the country with the highest number of publications (67), followed by UK (41), India (38) and Australia (31) and that the highest number of collaborations (4) is registered between UK and USA. The Three-Field Plot also shows that Spain has the largest number of publications in the analyzed domain and that the publications are mainly focused on “Sustainable development goals”, “Artificial intelligence”, and “Internet of Things”. • As regards the keywords, “sustainable development” is the most used keyword (18%), followed by “artificial intelligence” (16%) and by “sustainable development goal” (14%). Furthermore, the 10 main keywordsplus have an increasing trend in this domain, in the period 2018-2021. • In 2021, the three main trending topics were “artificial intelligence”, “sustainable development goal” and “sustainability”. In 2020, however, the three main topics were the following: “sustainable development”, “governance” and “environmental sector”. • The citation analysis showed that out of 106 documents, 65 have at least 3 citations. In particular, three relevant studies emerged in this domain of analysis (Hughes et al., 2019; Bonilla et al., 2018; Papa et al., 2020). • The co-citation analysis was carried out using the “full counting” method. In order to have a significant co-citation, a threshold of at least 10 citations was selected, for a total of 48 cited sources. The co-citation analysis of the cited sources led to the formation of 5 clusters. • The co-citation analysis was also conducted at author level with VOSviewer, using the “full counting” method. 67 authors with at least 10 citations were included. This second co-citation analysis led to the formation of 5 clusters. • The co-authorship analysis (co-authors with at least one item and cited at least 30 times in the analyzed period) highlighted 43 authors, grouped in 10 clusters of different colors. Only 11 authors were co-authors of two items. • The co-authorship network based on the country of affiliation (at least 1 publication in the analyzed period and at least 10 citations) led to 31 countries that exceeded the threshold and that were divided into 7 clusters. The UK has the highest link strength. • Out of 106 publications, only 85 have interconnections. They were grouped into 12 thematic clusters on the basis of shared references (bibliographic coupling). • In order to identify the thematic flow, the co-occurrence analysis of the author’s keywords was carried out to better understand the search trends. Initially, a total of 302 keywords were extracted from the list of 106 documents. The keywords were then limited to at least two occurrences. The analysis produced a total of 48 keywords, grouped into 8 clusters of different colors. 263 links and a total link strength of 516 are identified. The network shows, as expected, that the most used keyword (53 occurrence) is “Sustainable Development Goals”. In terms of the new technology analyzed, “Artificial Intelligence” appears to be the one with the highest number of occurrences (38), followed by “Blockchain” (20) and “Internet of Things” (19). From the analyzes carried out to answer the RQ2, it is possible to draw the following considerations. Regarding the analyzes carried out on blockchain solutions, it emerged that they could be used as a support for the achievement of the SDGs and, in particular, to create and store verifiable digital identities for refugees, allow traceable and economic money transfers or as support in the energy transition. In this Thesis, relevant case studies were analyzed, such as the “Building Blocks - Blockchain for Zero Hunger” project which demonstrates the efficiency of the blockchain in the management of a humanitarian project (SDG 2). One of the salient points of this project, in addition to the benefits for the recipients, is the scalability, that is, the potential replicability of the project in other regions, allowing millions of people to benefit from it and guaranteeing, at the same time, to maximize the financial management of monetary resources, often scarce and difficult to obtain, given that most of these resources come from donations. The second case study analyzed has allowed us to understand how UN Women is exploring solutions based on blockchain technology to overcome the challenges that women and girls face in humanitarian contexts and to increase their degree of access to socio-economic opportunities (SDG 5). The third case study analyzed is an example of a blockchain solution to support the trade of climate assets, registered via blockchain, which could lead to an emissions trading scheme, which can also be replicated in other countries. As regards the analyzes carried out on IoT-based solutions, it emerged that existing projects based on this technology can contribute to the achievement of the SDGs. In particular, in this Thesis, IoT projects related to various sectors were analyzed, such as: health, water and hygiene; agriculture; education; environment; infrastructure and energy sector. As for the analyzes carried out on AI-based solutions, it emerged that there is a wide range of applications that can act as a turning point for the pursuit of sustainable development goals, involving actors from different countries, cultures and sectors. As emerges from the three case studies presented in this Thesis, AI can generate data for a more targeted action (as in the case of PlantVillage), to reduce waste and losses of production and consumption (as in Smart Water Management), and to create new applications with the potential to transform entire sectors and professions, in a simple and cost-effective way (Clean Water AI). Contributions to existing literature In the context of sustainability and sustainable development, this Thesis focused on the technological component and proposed that the transition path towards inclusive and sustainable economic development, from an economic, social and environmental point of view, must be with high intensity of Science, Technology and Innovation. In fact, STIs are essential for achieving faster progress in these areas because such solutions have the potential to contribute to transformative actions capable of reorienting production, promoting equality and inclusion and having positive impacts. However, STI solutions need to be reconfigured for this to happen. There are, of course, opportunities to adapt and apply traditional technologies, but the applications of these technologies have not been specifically designed and geared towards the SDGs. For these reasons, this Thesis proposes the use of new technologies, in particular Blockchain, IoT and AI, to achieve the SDGs because, as emerged from the case studies analyzed in this Thesis, they are arousing strong interest from the various stakeholders. In addition, they are the subject of various pilot projects by EU Organizations and International Organizations, with the aim of identifying and exploiting their potential to facilitate the achievement of the SDGs. This Thesis also presented the main policy implications and highlighted how the concept of sustainable development represents a general vector for the implementation of public policies through the use of effective financial and legal tools. A greater use of financial and legal instruments will therefore contribute to guaranteeing the implementation of sustainable development policies, increasing the efficiency of socio-economic systems and creating favorable conditions for a deeper integration of the European economic environment into the world community. A particular focus was also dedicated to EU support and interventions to address the socio-health emergency through the Next Generation EU (NGEU) to integrate the 2021-2027 Multiannual Financial Framework and stimulate recovery. Conclusions This Thesis analyzed, through a survey literature review, the concepts of sustainability and sustainable development and outlined, through a historical excursus, the framework in which the 17 SDGs were defined, in order to identify the reasons and circumstances that led to the definition of these objectives. In particular, as emerged in this Thesis, the SDGs, which bring together environmental, social and economic aspects, focus, with particular emphasis, on social issues and, first of all, on the elimination of poverty, which is seen as the greatest global challenge and a prerequisite for sustainable development (Wennersten & Qie, 2018). These SDGs, thanks to their configuration, have the potential to bring society from the dominant model of purely economic prosperity towards holistic and sustainable prosperity (Mair et al., 2018). At present, the SDGs framework therefore represents the fundamental paradigm of the genesis of the international ecological and socio-economic system of countries around the world, in order to aim at the creation of the modern world, which is based on the need to guarantee the international balance, solving socio-economic problems and preserving the environment. This implies the need for systemic thinking that draws on theories, tools and techniques capable of facilitating better interaction and cooperation between the various actors involved. This is necessary because the success of such a transformative agenda depends, however, on its implementation, according to an integrated, holistic and multistakeholder approach (Reynolds et al., 2018). The SDG Indexes and Dashboards, presented in this Thesis, are valuable tools that can provide not only a wake-up call, but also a strong warning for global policymakers. From the analyzes carried out, it was observed that no country is currently able to achieve all the SDGs by 2030. This circumstance is explained by considering that progress towards sustainable production and consumption models is too slow and high-income countries generate significant environmental, economic and safety spillovers that undermine the efforts made by other countries to achieve the SDGs (Walsh et al., 2020). As advocated by the European Union, research and innovation must respond to the needs of society and should be based on co-design, co-development and coprovision of solutions, including through partnerships between government stakeholders, private sector, civil society, research communities and international partners, which the technological facilitation mechanism should bring together (Sabato et al., 2015). Furthermore, with the adoption of the 2030 Agenda, there has been a renewed impetus for a series of existing and new international initiatives relating to sciencepolitics interactions. Indeed, many of the SDGs point to the STI implementation for sustainable development as a tool for international cooperation and diplomacy, in particular, regarding science, technological facilitation and innovation capacity development mechanisms (SDG 17.6 and 17.8), as well as for data analysis and measurement (SDG 17.18 and 17.19). Given the great potential of blockchain technology, it is believed that it can be a valuable tool to address the urgent challenges related to achieving the SDGs. The decision to implement a blockchain approach should, however, be based on an in-depth assessment of various factors, such as: cost-benefit analysis, governance aspects, regulatory framework and interconnection with existing tools. The combination of low-cost IoT and Pay as you go (PAYG) presents itself as a valid scenario to better disseminate IoT to promote the achievement of the SDGs. However, it is necessary to take into account some of the main challenges related to the implementation of this technology in developing countries. These challenges can be of a technical, financial nature or can be related to environmental conditions, social factors or policy implications. Furthermore, AI can also be a powerful enabler of the global effort to promote economic development and, at the same time, to sustainably address the impact of production and consumption on societies, governance systems and environment. Thus, such innovations can help improve the efficiency of industries and sectors, conserve valuable and non-renewable resources, disseminate knowledge and skills, fill global gaps in resources and technology, and create effective multi-sector partnerships (governments, private sector, society and citizenship) which may have an impact on global sustainability. Furthermore, this Thesis analyzed the policy implications, also considering the negative impacts that Covid-19, and the consequent global economic crisis, are having on the achievement of most of the SDGs, as well as the new scenario deriving from the EU commitment with the Next Generation EU to promote recovery. Limitations and directions for future research The main purpose of this Thesis was to understand the evolution of the literature relating to New Technologies for achieving the SDGs (RQ1) and to identify the applications and effects of the use of New Technologies (in particular, Blockchain, Internet of Things and Artificial Intelligence) for achieving the SDGs (RQ2). This research will benefit both researchers and professionals as it provides both a general understanding of the existing research on the topic analyzed and a practical insight into the main technologies that characterize Digital Transformation and into the main high-tech projects that are being implemented. This Thesis, like other research on the same topic, however, has some limitations. In this Thesis, to answer the RQ1, only the Scopus Database was used for data collection and, therefore, publications indexed in other databases may have been excluded. Future research on the same topic could reduce this bias using other databases. To respond to RQ2, this Thesis analyzed the applications and effects of the use of Blockchain, Internet of Things and Artificial Intelligence to achieve the SDGs in a qualitative way, through the analysis of some case studies considered more illustrative. Future research on the same topic could identify further illustrative case studies. Since this research topic is relatively new, similar studies could be conducted, in the future, in order to understand the evolution of the analyzed topic. In fact, further studies and future research may be conducted to understand which are the most promising applications in the various areas involved and to what extent these applications can support the objectives set by the 2030 Agenda. Despite these limitations, this Thesis offers a holistic approach to this topic and provides several ideas for future research in order to deepen this topic.
Introduzione I 17 Obiettivi di Sviluppo Sostenibile (Sustainable Development Goals – SDGs), articolati in 169 target, rientrano nell’Agenda 2030 per lo Sviluppo Sostenibile, un programma d’azione sottoscritto nel settembre 2015 dai Governi dei 193 Paesi membri dell’Organizzazione delle Nazioni Unite (ONU). Gli SDGs danno seguito ai risultati degli Obiettivi di Sviluppo del Millennio (Millennium Development Goals – MDGs) e sono collegati a questioni di primaria importanza per lo sviluppo. Essi prendono in considerazione, in maniera equilibrata, le tre dimensioni dello sviluppo sostenibile (dimensione economica, sociale e ambientale) e mirano a porre fine alla povertà, a ridurre l’ineguaglianza, ad affrontare i cambiamenti climatici e a costruire società che rispettino i diritti umani. Nella società civile, nel tessuto imprenditoriale, nel mondo politico e nell’opinione pubblica, vi è una sempre maggiore consapevolezza riguardo la necessità di adottare un approccio integrato e delle misure concrete per realizzare un cambio di paradigma socio-economico al fine di affrontare le numerose e complesse sfide ambientali e istituzionali. Obiettivi e domande di ricerca Partendo da queste premesse, l’obiettivo primario di questa Tesi è stato quello di analizzare in che modo le nuove tecnologie possano contribuire alla realizzazione degli SDGs, nonché di indagare lo stato attuale di implementazione di tali soluzioni altamente tecnologiche e le possibili traiettorie di sviluppo futuro. Per raggiungere tale scopo, questa Tesi, partendo da una survey literature review sui concetti di sostenibilità e sviluppo sostenibile, ha effettuato un excursus storico al fine di individuare le motivazioni e le circostanze che hanno portato alla definizione degli SDGs e ha presentato gli obiettivi da raggiungere entro il 2030. In particolare, questa Tesi, al fine di indagare i trend di ricerca e identificare il contributo delle Nuove Tecnologie per il raggiungimento degli SDGs, si è posta le seguenti domande di ricerca (RQ): 1. Tra i vari paesi, organizzazioni, riviste, articoli e autori che hanno contribuito alla letteratura relativa alle nuove tecnologie per il raggiungimento degli SDGs, chi o quali sono i più influenti (RQ1)? 2. Come le Nuove Tecnologie (in particolare, Blockchain, Internet of Things e Intelligenza Artificiale) stanno contribuendo e potranno contribuire al raggiungimento degli SDGs? (RQ2) Per rispondere alla RQ1 e, quindi, valutare la produttività della ricerca globale in tale campo, ed esaminare i trend e la crescita internazionale della ricerca su tale topic, nonché identificare i principali interessi di ricerca, in questa Tesi è stata condotta una analisi bibliometrica per esplorare e individuare tra i vari paesi, organizzazioni, riviste, articoli e autori che hanno contribuito alla letteratura relativa alle nuove tecnologie per il raggiungimento degli SDGs, chi o quali sono i più influenti. Per fornire risposta alla RQ2, questa Tesi ha analizzato, in modo parallelo, nei capitoli 3, 4 e 5, il contributo attuale e potenziale della Nuove Tecnologie, e, in particolare, Blockchain, Internet of Things (IoT) e Intelligenza Artificiale (IA) per il raggiungimento degli SDGs. In particolare, in ciascun capitolo è stata presentata la tecnologia di riferimento e le sue principali applicazioni per il raggiungimento degli SDGs. Per meglio comprendere il potenziale applicativo di ciascuna tecnologia esaminata, sono stati illustrati e commentati i principali progetti, realizzati e in corso di realizzazione, da parte di Organizzazioni Comunitarie e Organizzazioni Internazionali. Dalle analisi che sono state effettuate in questa Tesi è stato possibile delineare un framework d’azione per una corretta implementazione di ciascuna tecnologia proposta ed è stato possibile definire linee guida e considerazioni di policy per individuare la soluzione tecnologia più idonea e adatta alle specifiche esigenze, al fine di raggiungere in ambito ambientale, economico, sociale e istituzionale gli obiettivi prefissati entro il 2030, anche alla luce dei nuovi scenari derivanti dal COVID-19 e dall’impegno dell’UE con il Next Generation EU. Limitazioni della letteratura esistente Una descrizione particolarmente diffusa di sostenibilità utilizza tre pilastri interconnessi (Basiago, 1998; Boyer et al., 2016), dimensioni (Stirling, 1999; Mori & Christodoulou, 2012), componenti (Du Pisani, 2006; Zijp et al., 2015), “stool leg” (Dawe & Ryan, 2003; Vos, 2007), aspetti (Goodland, 1995; Tanguay et al., 2010), prospettive (Brown et al., 1987; Arushanyan et al., 2017), che comprendono fattori o obiettivi economici, sociali e ambientali. Sebbene questi tre pilastri siano diventati comuni in tutta la letteratura, non sono universali. Alcuni lavori considerano pilastri aggiuntivi come quello istituzionale (Spangenberg et al., 2002; Turcu, 2013), culturale (Soini & Birkeland, 2014) e tecnico (Hill & Bowen, 1997). Il diagramma dei tre cerchi sembra essere stato concettualizzato, per la prima volta, da Barbier (1987), con particolare riferimento ai paesi in via di sviluppo. Tuttavia, la concettualizzazione dei tre pilastri sembra essere precedente. La stessa formulazione dei tre pilastri, infatti, precede Barbier, almeno implicitamente, in quanto appare nella “World Conservation Strategy” della IUCN del 1980, in O’Riordan (1985), in Brown et al. (1987), e in opere che precedono il linguaggio della sostenibilità, come le discussioni sull’eco-sviluppo di Sachs e il lavoro di Passet (1979). Le origini del paradigma dei tre pilastri sono state variamente attribuite al Rapporto Brundtland, all’Agenda 21 e al Vertice Mondiale sullo Sviluppo Sostenibile del 2002 (Moldan et al., 2012), ma in nessuno di questi documenti è presente un quadro chiaro o uno sfondo teorico reso esplicito. All’inizio del nuovo millennio, i leader mondiali delle Nazioni Unite hanno dato forma a un’ampia mission per combattere la povertà nelle sue molteplici dimensioni (United Nations, 2015a). Questa visione, che è stata tradotta negli otto Millennium Development Goals (MDGs), è rimasta il quadro di sviluppo globale fino alla definizione dei Sustainable Development Goals (SDGs). Gli obiettivi di sviluppo del millennio (MDGs) hanno dato vita a un metodo storico ed efficace di mobilitazione globale per raggiungere una serie di importanti priorità sociali a livello mondiale, evidenziando una diffusa preoccupazione pubblica per la povertà, la fame, le malattie, il basso tasso di scolarizzazione, la disuguaglianza di genere e il degrado ambientale (Sachs, 2012). Dopo il vertice del 2012, è stato istituito un Gruppo di lavoro per sviluppare i Sustainable Development Goals (SDGs) per il post 2015, incorporando, in modo equilibrato, le tre le dimensioni (economica, sociale e ambientale) dello sviluppo sostenibile. Gli SDGs si basano sui precedenti MDGs ma perseguono obiettivi più ambiziosi, all’interno di una Agenda che si propone di essere trasformativa e, dunque, in grado di apportare cambiamenti strutturali (Fisher & Fukuda-Parr, 2019). L’Agenda 2030 per lo sviluppo sostenibile si configura, quindi, come un piano d’azione per le persone, il pianeta e la prosperità e i suoi 17 Obiettivi e 169 target stimoleranno l’azione, nel periodo compreso tra il 2015 e il 2030, in aree di fondamentale importanza per l’umanità e il pianeta. I 17 obiettivi analizzati possono, dunque, essere raggruppati in tre macrocategorie: • Sociali: Rientrano in questa categoria i seguenti SDGs: SDG 2, SDG 3, SDG 4 e SDG 16. La sostenibilità sociale è raggiunta attraverso standard che aiutano a migliorare la salute e il benessere dei cittadini. Ciò include tutti gli aspetti del benessere sociale che abbracciano la salute, l’inclusione sociale e l’accessibilità. • Economici: Rientrano in questa categoria i seguenti SDGs: SDG 1, SDG 5, SDG 8, SDG 9 e SDG 10. La sostenibilità economica è raggiunta attraverso standard che aiutano a migliorare il commercio internazionale, la qualità delle infrastrutture e a supportare pratiche commerciali sostenibili. • Ambientali: Rientrano in questa categoria i seguenti SDGs: SDG 6, SDG 7, SDG 11, SDG 13, SDG 14 e SDG 15. La sostenibilità ambientale è raggiunta attraverso standard che supportano i sistemi di gestione ambientale, misurando e riducendo i gas serra e il consumo di energia. Emerge, quindi, che le interconnessioni e la natura integrata degli obiettivi di sviluppo sostenibile sono di importanza cruciale per garantire la realizzazione dello scopo della nuova Agenda 2030 (United Nations, 2015b). Ciò implica che gli obiettivi e l’efficacia delle politiche volte a raggiungerli dipendono gli uni dagli altri. Gli sforzi di implementazione che trascurano queste interdipendenze sistemiche potrebbero, infatti, essere difficilmente adatti allo scopo (Collste et al., 2017). Il potenziale di trasformazione dell’Agenda 2030 risiede, infatti, nelle sinergie da ricercare tra gli SDGs (Timko et al., 2018). Tuttavia, ignorare potenziali compromessi potrebbe avere conseguenze non intenzionali potenzialmente negative (Nilsson et al., 2016). I dati sulle prestazioni e sui risultati forniscono informazioni essenziali per monitorare l’attuazione degli SDGs. Tali dati dovrebbero, però, essere integrati da altre valutazioni di carattere qualitativo circa gli sforzi politici e le altre azioni promosse a sostegno degli obiettivi (Sachs et al., 2020). Scienza, Tecnologia e Innovazione (STI, come indicato nei contesti ONU) sono state riconosciute come uno dei principali motori dell’aumento della produttività e come una leva chiave a lungo termine per la crescita economica, la prosperità e la sostenibilità ambientale (Giovannini et al., 2015). Nel contesto della nuova Agenda e per il raggiungimento degli SDGs, STI giocano un ruolo ancora più centrale. Innanzitutto, STI hanno un carattere fortemente trasversale per raggiungere i diversi obiettivi e i traguardi settoriali. Promuovere l’innovazione rientra in SDG 9, relativo alle infrastrutture resilienti e all’industrializzazione inclusiva e sostenibile. In particolare, il Target 9.5 eleva il ruolo della politica di ricerca e innovazione ben oltre le STI, come uno dei mezzi di attuazione. La tecnologia e, di conseguenza, anche le tecnologie emergenti come Intelligenza Artificiale, Big Data, Internet of Things, Blockchain e comunicazioni 5G possono essere acceleratori di innovazione in grado di creare nuovi prodotti, processi e industrie e di sconvolgere lo status quo dell’Information Communication Technology (ICT). Tuttavia, nell’Agenda 2030 e negli SDGs non viene fatto esplicito riferimento alle Nuove Tecnologie e alle tecnologie emergenti, nonostante il ruolo chiave riconosciuto alle STI per il raggiungimento degli SDGs. L’Agenda 2030 afferma, infatti, che l’ICT, e le relative tecnologie, possono contribuire ad aumentare in modo sostanziale i progressi e colmare il divario digitale tra le comunità (Wu et al., 2018). Metodologia Per fornire risposta alla RQ1, questa Tesi ha condotto, nel capitolo 2, una analisi bibliometrica, al fine di valutare la produttività della ricerca globale in tale campo, esaminare i trend e la crescita internazionale della ricerca su tale topic, nonché identificare i principali interessi di ricerca. Si è scelto di applicare una analisi bibliometrica in quanto, in molteplici campi di ricerca, tale metodo è utilizzato per la valutazione quantitativa della ricerca sulla produzione accademica (Callon et al., 1991). Inoltre, l’analisi bibliometrica ha guadagnato, negli ultimi anni, un’immensa popolarità in management (Khan et al., 2021) anche se il suo utilizzo in tale campo è ancora relativamente recente (Donthu et al., 2021). Tale popolarità è attribuibile alla disponibilità di database scientifici come Scopus e Web of Science e all’utilizzo interdisciplinare della metodologia bibliometrica dalla scienza dell’informazione alla ricerca aziendale (Donthu et al., 2021). In questa Tesi è stato adottato l’approccio di Rowley & Slack (2004) per effettuare una review della letteratura. Questa procedura contribuisce a individuare e identificare il tema della ricerca e le future linee di studio. Esso si configura come un processo in cinque fasi. Inizialmente sono stati esplorati sia Scopus che Web of Science (WoS), i due database bibliografici più popolari. A causa della migliore copertura offerta, è stato scelto il database Scopus per la raccolta dei dati. La query di ricerca iniziale includeva “Sustainable Development Goals” e “Blockchain”, “Artificial Intelligence”, “Internet of Things”. Sono stati utilizzati anche gli acronimi con gli operatori booleani “OR” per ottenere l’insieme universale di documenti. La ricerca iniziale ha portato a 397 documenti. In questa ricerca è stata limitata l’area tematica a “Business, Management and Accounting” e “Social Science”, a seguito della quale sono rimasti 155 documenti nell’output. Inoltre, la ricerca è stata limitata a published articles, articles in press e reviews, come criteri di inclusione poiché sono considerati “conoscenza certificata” (RamosRodrígue & Ruíz-Navarro, 2004); questo ha portato a 113 documenti. Sono stati considerati, dunque, solo articoli in riviste e sono stati esclusi documenti come atti di conferenze, tesi e capitoli di libri. Infine, 109 articoli sono rimasti nell’output di ricerca dopo aver escluso tutti gli articoli non in lingua inglese e i duplicati. Visto che la versione finale di questa ricerca è di inizio 2022, il dataset è stato costituito includendo gli articoli fino a dicembre 2021. Sono state, dunque, scaricate le informazioni sulle citazioni, le informazioni bibliografiche, gli abstract e le parole chiave e le references di questi 106 articoli in un file separato da virgole (.csv) da Scopus. In questa Tesi è stato utilizzato il linguaggio di programmazione R e i software Biblioshiny e VOSviewer per analizzare i dati raccolti. VOSviewer è stato utilizzato per visualizzare graficamente i dati bibliografici, per identificare i primi dieci autori, riviste, paesi e articoli più influenti. Questo stesso strumento è stato utilizzato per analizzare le relazioni nel network, attraverso la citation analysis, la co-citation analysis, la co-autorship analysis, il bibliographic coupling e la co-occurrence analysis. Biblioshiny è stato utilizzato per eseguire la keywords analysis, il three-field plot e ulteriori analisi che sono state descritte nel capitolo 2. In primo luogo, sono stati ottenuti thematic map, tree map, word cloud, e trend topic matrix utilizzando la keywords analysis. È stato creato il three-field plots per visualizzare l’interazione tra countries, keywords, and journals. Infine, ulteriori analisi hanno fornito: annual scientific production graph, country scientific production map, author impact, source impact, and most local cited sources. Risultati Dalle analisi effettuate (performance analysis e science mapping) per rispondere alla RQ1 è emerso che: • La ricerca su questi topic ha preso slancio dal 2019, registrando un tasso di crescita annuo del 131.05%. • Il paper più influente è Hughes, L. (2019) con 206 citazioni. • Su 423 autori, 237 hanno almeno una pubblicazione e 2 citazioni. • Su 54 journal, solo 9 hanno almeno 2 articoli pubblicati e almeno 2 citazioni. • Come dimostrato anche dalla Source clustering, effettuata attraverso la Bradford’s Law, le principali fonti (core source) sono Sustainability e Journal of Cleaner Production. • Dalla country analysis si evince che la Spagna è il paese con il maggior numero di pubblicazioni (67), seguito da UK (41), India (38) e Australia (31) e che il maggior numero di collaborazioni (4) si registra tra Regno Unito e USA. Dal Three-Field Plot, si evince anche che la Spagna ha il maggior numero di pubblicazioni nel dominio analizzato e che le pubblicazioni sono principalmente focalizzate su “Sustainable development goals”, “Artificial intelligence”, e “Internet of Things”. • In termini di keyword, “sustainable development” è la keyword più utilizzata (18%), seguita da “artificial intelligence” (16%) e da “sustainable development goal” (14%). Inoltre, le 10 principali keywords plus hanno un andamento crescente nel dominio di analisi, nel periodo 2018-2021. • Nel 2021, i tre principali topic di tendenza sono stati “artificial intelligence”, “sustainable development goal” e “sustainability”. Nel 2020, invece, i tre principali topic sono stati i seguenti: “sustainable development”, “governance” e “environmental sector”. • La citation analysis ha evidenziato che su 106 documenti, 65 hanno almeno 3 citazioni. In particolare, sono emersi tre studi rilevanti in questo dominio di analisi (Hughes et al., 2019; Bonilla et al., 2018; Papa et al., 2020). • La co-citation analysis è stata effettuata utilizzando il metodo “full counting”. Al fine di avere una co-citation significativa, è stato selezionato un threshold di minimo 10 citazioni, per un totale di 48 fonti citate. La co-citation analysis delle fonti citate ha portato alla formazione di 5 cluster. • La co-citation analysis è stata condotta anche a livello di autore con VOSviewer, utilizzando il metodo “full counting”. Sono stati inclusi i 67 autori con almeno 10 citazioni. Questa seconda co-citation analysis ha portato alla formazione di 5 cluster. • La co-authorship degli autori (co-autori di almeno un item e citati almeno 30 volte nel periodo oggetto dell’analisi) ha evidenziato 43 autori, raggruppati in 10 cluster di diversi colori. Solo 11 autori sono stati co-autori di due items. • Il network di co-authorship sulla base del paese di affiliazione (almeno 1 pubblicazione nel periodo oggetto d’analisi e almeno 10 citazioni) ha portato a 31 paesi che hanno superato il threshold e che sono stati suddivisi in 7 cluster e il Regno Unito ha il link strength più elevato. • Delle 106 pubblicazioni, solo 85 presentano interconnessioni e sono state raggruppate in 12 cluster tematici sulla base di reference condivise (bibliographic coupling). • Per individuare il flusso tematico, è stata effettuata la co-occurrence analysis delle keywords dell’autore per comprendere meglio i trend di ricerca. Inizialmente, sono state estratte un totale di 302 parole chiave dall’elenco di 106 documenti. Le parole chiave sono state poi limitate ad almeno due occorrenze. L’analisi ha prodotto un totale di 48 parole chiave, raggruppate in 8 cluster di colore diverso. Si individuano 263 link e un total link strength di 516. Il network mostra, come prevedibile, che la parola chiave più utilizzata (53 occurrence) è “Sustainable Development Goals”. In termini di nuova tecnologia analizzata, “Artificial Intelligence”, risulta essere quella con il maggior numero di occorrenze (38), seguita da “Blockchain” (20) e “Internet of Things” (19). Dalle analisi effettuate per rispondere alla RQ2, è possibile trarre le seguenti considerazioni. Per quanto riguarda le analisi effettuate sulle soluzioni blockchain, è emerso che esse potrebbero essere utilizzate come supporto per il raggiungimento degli SDGs e, in particolare, per creare e archiviare identità digitali verificabili per i rifugiati, consentire trasferimenti di denaro tracciabili ed economici o come supporto nella fase di transizione energetica. In questa Tesi sono stati analizzati esempi significativi, come il progetto “Building Blocks - Blockchain For Zero Hunger” che dimostra l’efficienza della blockchain nella gestione di un progetto umanitario (SDG 2). Uno dei punti salienti di questo progetto, oltre ai benefici per i destinatari, è la scalabilità, ovvero, il potenziale di replicabilità del progetto in altre regioni, permettendo a milioni di persone di beneficiarne e garantendo, allo stesso tempo, di massimizzare la gestione finanziaria delle risorse monetarie, spesso scarse e difficili da reperire, dato che la maggior parte di tali risorse proviene da donazioni. Il secondo caso studio analizzato ha permesso di capire come UN Women sta esplorando soluzioni basate sulla tecnologia blockchain per fronteggiare le sfide che le donne e le ragazze affrontano in contesti umanitari e per incrementare il loro grado di accesso alle opportunità di carattere socio-economico (SDG 5). Il terzo caso studio analizzato è un esempio di soluzione blockchain a supporto del commercio di asset climatici, registrati tramite blockchain, che potrebbe portare a un regime di scambio di quote di emissioni, replicabile anche in altri paesi. Per quanto riguarda le analisi effettuate sulle soluzioni basate sull’IoT, è emerso che i progetti esistenti basati su tale tecnologia possono contribuire al raggiungimento degli SDGs. In particolare, in questa Tesi sono stati analizzati progetti riconducibili a diversi ambiti applicativi IoT, quali: salute, acqua e igiene; agricoltura; istruzione; ambiente; infrastrutture e settore energetico. Per quanto riguarda le analisi effettuate sulle soluzioni basate sull’IA, è emerso che esiste una vasta gamma di applicazioni che possono fungere da punto di svolta per il perseguimento degli obiettivi di sviluppo sostenibile, coinvolgendo attori di diversi paesi, culture e settori. Come emerge dai tre casi di studio presentati in questa Tesi, l’IA può generare dati per una azione d’intervento più mirata (come nel caso di PlantVillage), per ridurre gli sprechi e le perdite di produzione e consumo (come nello Smart Water Management), per creare nuove applicazioni con il potenziale di trasformare interi settori e professioni, in modo semplice e con riduzione dei costi (Clean Water AI). Contributi alla letteratura esistente In questa Tesi si è voluto porre l’attenzione, nell’ambito della sostenibilità e dello sviluppo sostenibile, sulla componente tecnologica e si è proposto che il percorso di transizione verso uno sviluppo economico inclusivo e sostenibile, da un punto di vista economico, sociale e ambientale, deve essere ad alta intensità di Scienza, Tecnologia e Innovazione. Le STI sono, infatti, fondamentali per ottenere progressi più rapidi in queste aree perché tali soluzioni hanno il potenziale per contribuire ad azioni trasformative in grado di riorientare la produzione, promuovere l’uguaglianza e l’inclusione e avere, complessivamente, impatti positivi. Tuttavia, affinché ciò si realizzi, le soluzioni STI devono essere riconfigurate. Esistono, senza dubbio, opportunità per adattare e applicare le tecnologie tradizionali, ma le applicazioni di queste tecnologie non sono state progettate e orientate specificatamente per gli SDGs. Per queste motivazioni, in questa Tesi si propone l’utilizzo delle nuove tecnologie, in particolare Blockchain, IoT e IA, per il raggiungimento degli SDGs in quanto, come emerso dai casi studio analizzati in questa Tesi, stanno suscitando forte interesse da parte dei diversi stakeholder e sono oggetto di diversi progetti pilota da parte di Organizzazioni Comunitarie e Organizzazioni Internazionali, allo scopo di individuarne e sfruttarne il potenziale per facilitare il raggiungimento degli SDGs. Questa Tesi ha, inoltre, presentato le principali implicazioni di policy e ha evidenziato come il concetto di sviluppo sostenibile rappresenta un vettore generale di attuazione delle politiche pubbliche attraverso l’utilizzo di strumenti finanziari e legali efficaci. Un maggiore utilizzo di strumenti finanziari e legali contribuirà, dunque, a garantire l’attuazione delle politiche di sviluppo sostenibile, ad aumentare l’efficienza dei sistemi socio-economici e a creare condizioni favorevoli per una più profonda integrazione dell’ambiente economico europeo nella comunità mondiale. Un particolare focus è stato dedicato anche al sostegno e agli interventi dell’UE per fronteggiare l’emergenza socio-sanitaria attraverso il Next Generation EU (NGEU) per integrare il Quadro Finanziario Pluriennale 2021-2027 e stimolare la ripresa. Conclusioni Questa Tesi ha analizzato, attraverso una survey literature review, i concetti di sostenibilità e di sviluppo sostenibile e ha delineato, attraverso un excursus storico, il quadro in cui sono stati definiti i 17 SDGs, al fine di individuare le motivazioni e le circostanze che hanno portato alla definizione di tali obiettivi. In particolare, come è emerso in questa Tesi, gli SDGs, che riuniscono aspetti ambientali, sociali ed economici, si concentrano, con una particolare enfasi, sulle questioni di carattere sociale e, in primis, sull’eliminazione della povertà, che viene vista come la più grande sfida globale nonché un requisito indispensabile per lo sviluppo sostenibile (Wennersten & Qie, 2018). Gli SDGs, grazie alla loro configurazione, hanno il potenziale per portare la società dal modello dominante di prosperità puramente economica verso una prosperità olistica e sostenibile (Mair et al., 2018). Allo stato attuale, il framework degli SDGs rappresenta, dunque, il paradigma fondamentale della genesi del sistema ecologico e socio-economico internazionale dei paesi di tutto il mondo, al fine di puntare alla creazione del mondo moderno, che si basa sulla necessità di garantire l’equilibrio internazionale, risolvendo i problemi socio-economici e preservando l’ambiente. Ciò implica la necessità di un pensiero sistemico che attinge a teorie, strumenti e tecniche in grado di facilitare una migliore interazione e cooperazione tra i diversi attori coinvolti. Questo si rende necessario in quanto il successo di un’Agenda così trasformativa dipende, però, dalla sua attuazione, secondo un approccio integrato, olistico e multistakeholder (Reynolds et al., 2018). Gli SDG Index e le Dashboard, presentati in questa Tesi, sono dei validi strumenti che possono fornire non solo un campanello d’allarme, ma anche un forte avvertimento per i responsabili politici globali. Dalle analisi effettuate, si è osservato che nessun paese è, attualmente, in grado di raggiungere tutti gli SDGs entro il 2030. Questa circostanza si spiega considerando che il progresso verso modelli di produzione e consumo sostenibili è troppo lento e i paesi ad alto reddito generano significativi spillover di tipo ambientale, economico e di sicurezza che minano gli sforzi effettuati dagli altri Stati per raggiungere gli SDGs (Walsh et al., 2020). Come sostenuto dall’Unione Europea, la ricerca e l’innovazione devono rispondere alle esigenze della società e dovrebbero essere basate sulla coprogettazione, sul co-sviluppo e sulla co-fornitura di soluzioni, anche attraverso partenariati tra le parti interessate, quali governi, settore privato, società civile, comunità di ricerca e partner internazionali, che il meccanismo di facilitazione tecnologica dovrebbe riunire (Sabato et al., 2015). Inoltre, con l’adozione dell’Agenda 2030, si è assistito a un rinnovato slancio per una serie di iniziative internazionali, già esistenti e nuove, relative alle interazioni scienza-politica. In effetti, molti degli SDGs indicano l’implementazione STI per lo sviluppo sostenibile (SD) come strumento per la cooperazione e la diplomazia internazionale, in particolare, per quanto riguarda la scienza, la facilitazione tecnologica e i meccanismi di sviluppo della capacità di innovazione (SDG 17.6 e 17.8), nonché per l’analisi e le misurazioni dei dati (SDG 17.18 e 17.19). Dato il grande potenziale della tecnologia Blockchain, si ritiene che essa possa essere un valido strumento per affrontare le sfide urgenti legate al raggiungimento degli SDGs. La decisione di implementare un approccio blockchain dovrebbe, comunque, essere basata su una valutazione approfondita di diversi fattori, quali: analisi costibenefici, aspetti di governance, quadro normativo e interconnessione con gli strumenti esistenti. La combinazione di IoT a basso costo e Pay-as-you-go (PAYG) si presenta come un valido scenario per diffondere meglio l’IoT per promuovere il raggiungimento degli SDGs. È comunque necessario tenere in debita considerazione alcune delle principali sfide legate all’implementazione di tale tecnologia nei paesi in via di sviluppo. Tali sfide possono essere di tipo tecnico, finanziario o possono essere riconducibili a condizioni ambientali, fattori sociali o a implicazioni di policy. Inoltre, anche l’IA può essere un potente fattore abilitante dello sforzo globale per promuovere lo sviluppo economico e, allo stesso tempo, affrontare in modo sostenibile l’impatto della produzione e del consumo sulle società, sui sistemi di governance e sull’ambiente. Tali innovazioni possono, quindi, contribuire a migliorare l’efficienza di industrie e settori, a conservare risorse preziose e non rinnovabili, a diffondere conoscenze e competenze, a colmare le lacune globali in termini di risorse e tecnologia e a creare efficaci partenariati multisettoriali (governi, settore privato, società e cittadinanza) che possono avere impatti sulla sostenibilità globale. Inoltre, questa Tesi ha analizzato le implicazioni di policy, considerando anche gli impatti negativi che il Covid-19, e la conseguente crisi economica globale, stanno avendo sul raggiungimento della maggior parte degli SDGs, nonché il nuovo scenario derivante dall’impegno dell’UE con il Next Generation EU per promuovere la ripresa. Limiti e traiettorie di ricerca futura Lo scopo principale di questa Tesi è stato quello di capire l’evoluzione della letteratura relativa alle Nuove Tecnologie per il raggiungimento degli SDGs (RQ1) e di individuare le applicazioni e gli effetti dell’utilizzo delle Nuove Tecnologie (in particolare, Blockchain, Internet of Things e Intelligenza Artificiale) per raggiungimento degli SDGs (RQ2). Questa ricerca andrà a beneficio sia dei ricercatori che dei professionisti in quanto fornisce sia una comprensione generale della ricerca esistente sul topic analizzato sia un approfondimento pratico circa le principali tecnologie che caratterizzano la Digital Transformation e i principali progetti altamente tecnologici che sono in fase di implementazione. Questa Tesi, come altre ricerche sullo stesso topic, presenta, comunque, alcuni limiti da segnalare. In questa Tesi, per rispondere alla RQ1, per la raccolta dei dati è stata utilizzata solo la Banca Dati Scopus e, dunque, potrebbero essere state escluse pubblicazioni indicizzate in altre Banche Dati. Future ricerche sullo stesso argomento potrebbero ridurre questo bias utilizzando altre banche dati. Per rispondere alla RQ2, questa Tesi ha analizzato le applicazioni e gli effetti dell’utilizzo della Blockchain, dell’Internet of Things e dell’Intelligenza Artificiale per raggiungimento degli SDGs in modo qualitativo, attraverso l’analisi di alcuni casi studio ritenuti più esemplificativi. Future ricerche sullo stesso argomento potrebbero individuare ulteriori casi studio esemplificativi. Visto che questa tematica di ricerca è relativamente nuova, studi simili potrebbero essere condotti, in futuro, al fine di comprendere l’evoluzione del topic analizzato. Infatti, ulteriori studi e future ricerche potranno essere condotti per capire quali siano le applicazioni più promettenti nei diversi ambiti coinvolti e in che misura tali applicazioni possano supportare gli obiettivi previsti dall’Agenda 2030. Nonostante questi limiti, questa Tesi offre un approccio olistico di questo argomento e fornisce diversi spunti per future ricerche per approfondire questo topic.
APPLICAZIONI ED EFFETTI DELLE NUOVE TECNOLOGIE PER LA REALIZZAZIONE DEGLI OBIETTIVI DI SVILUPPO SOSTENIBILE
Pisani, Roberta
2022
Abstract
Introduction The 17 Sustainable Development Goals (SDGs), divided into 169 targets, are part of the 2030 Agenda for Sustainable Development, an action program signed in September 2015 by the Governments of the 193 member countries of the United Nations (UN). The SDGs follow up on the results of the Millennium Development Goals (MDGs) and are linked to issues of primary importance for development. They take into account, in a balanced way, the three dimensions of sustainable development (economic, social and environmental dimensions) and aim to end poverty, reduce inequality, tackle climate change and build societies that respect human rights. In society, in business, in the political world and in public opinion, there is a growing awareness of the need to adopt an integrated approach and concrete measures to achieve a socio-economic paradigm shift in order to address the numerous and complex environmental and institutional challenges. Objectives and research questions Starting from these premises, the primary objective of this Thesis was to analyze how New Technologies can contribute to the realization of the SDGs, as well as to investigate the current state of implementation of these highly technological solutions and the possible trajectories of future development. To achieve this aim, this Thesis, starting from a survey literature review on the concepts of sustainability and sustainable development, carried out a historical excursus in order to identify the reasons and circumstances that led to the definition of the SDGs, presenting the objectives to be achieved by 2030. In particular, this Thesis, in order to investigate research trends and identify the contribution of New Technologies to the achievement of the SDGs, asked the following research questions (RQ): 1. Among the various countries, organizations, journals, papers and authors that have contributed to the literature related to New Technologies for achieving the SDGs, who or which are the most influential (RQ1)? 2. How the New Technologies (in particular, Blockchain, Internet of Things and Artificial Intelligence) are contributing and will they be able to contribute to the achievement of the SDGs? (RQ2) In order to respond to RQ1 and, therefore, evaluate the productivity of global research in this field, and examine the trends and international growth of research on this topic, as well as identify the main research interests, a bibliometric analysis was conducted in this Thesis to explore and identify among the various countries, organizations, journals, articles and authors who have contributed to the literature related to new technologies for achieving the SDGs, who or which are the most influential. To provide an answer to RQ2, this Thesis analyzed, in parallel, in chapters 3, 4 and 5, the current and potential contribution of New Technologies, and, in particular, Blockchain, Internet of Things (IoT) and Artificial Intelligence (AI) for the achievement of the SDGs. Each technology and its main applications for achieving the SDGs were presented in each chapter. To better understand the potential of each technology examined, the main projects, carried out and in progress by Community Organizations and International Organizations, have been illustrated and commented on. From the analyzes that were carried out in this Thesis, it was possible to outline an action framework for a correct implementation of each proposed technology and it was possible to define guidelines and policy considerations to identify the most suitable technology solution for specific needs in order to achieve the objectives set by 2030 in the environmental, economic, social and institutional fields, also in light of the new scenarios deriving from COVID-19 and the EU’s commitment through the Next Generation EU. Limitations of existing literature A particularly widespread description of sustainability uses three interconnected pillars (Basiago, 1998; Boyer et al., 2016), dimensions (Stirling, 1999; Mori & Christodoulou, 2012), components (Du Pisani, 2006; Zijp et al., 2015), stool leg (Dawe & Ryan, 2003; Vos, 2007), aspects (Goodland, 1995; Tanguay et al., 2010), perspectives (Brown et al., 1987; Arushanyan et al., 2017), which include economic, social and environmental factors. Although these three pillars have become common throughout literature, they are not universal. Some papers consider additional pillars such as institutional (Spangenberg et al., 2002; Turcu, 2013), cultural (Soini & Birkeland, 2014) and technical ones (Hill & Bowen, 1997). The diagram of the three circles seems to have been conceptualized, for the first time, by Barbier (1987), with particular reference to developing countries. However, the conceptualization of the three pillars seems to be earlier. The same formulation of the three pillars, in fact, precedes Barbier, at least implicitly, as it appears in the “World Conservation Strategy” of the IUCN of 1980, in O’Riordan (1985), in Brown et al. (1987), and in works that precede the language of sustainability, such as Sachs’ discussions on eco-development and the work of Passet (1979). The origins of the three-pillar paradigm have been variously attributed to the Brundtland Report, Agenda 21 and the World Summit on Sustainable Development held in 2002 (Moldan et al., 2012), but none of these documents present a clear picture or an explicit theoretical background. At the beginning of the new millennium, the world leaders of the United Nations have shaped a broad mission to combat poverty in its many dimensions (United Nations, 2015a). This vision, which was translated into the eight Millennium Development Goals (MDGs), remained the global development framework until the definition of Sustainable Development Goals (SDGs). The Millennium Development Goals (MDGs) have given birth to a historical and effective method of global mobilization to achieve numerous social priorities worldwide, highlighting the widespread public concern about poverty, hunger, disease, low school attendance, gender inequality and environmental degradation (Sachs, 2012). After the 2012 summit, a Working Group was set up to develop the Sustainable Development Goals (SDGs) for post-2015, incorporating, in a balanced way, the three dimensions (economic, social and environmental) of sustainable development. The SDGs are based on the previous MDGs but pursue more ambitious objectives, within an Agenda that aims to be transformative and, therefore, capable of making structural changes (Fisher & Fukuda-Parr, 2019). The 2030 Agenda for Sustainable Development is, therefore, an action plan for people, the planet and prosperity and the 17 Goals and 169 targets will stimulate action, in the period between 2015 and 2030, in areas of fundamental importance for humanity and the planet. The 17 objectives analyzed can therefore be grouped into three macro categories: • Social: The following SDGs fall into this category: SDG 2, SDG 3, SDG 4 and SDG 16. Social sustainability is achieved through standards to improve the health and well-being of citizens. This includes all aspects of social wellbeing that embrace health, social inclusion and accessibility. • Economic: The following SDGs fall into this category: SDG 1, SDG 5, SDG 8, SDG 9 and SDG 10. Economic sustainability is achieved through standards to improve international trade, infrastructure quality and to support sustainable business practices. • Environmental: The following SDGs fall into this category: SDG 6, SDG 7, SDG 11, SDG 13, SDG 14 and SDG 15. Environmental sustainability is achieved through standards which, by measuring and reducing greenhouse gases and energy consumption, support environmental management systems. It therefore emerges that the interconnections and the integrated nature of the Sustainable Development Goals are crucial to ensure the achievement of the purpose of the 2030 Agenda (United Nations, 2015b). This implies that the objectives and the effectiveness of the policies aimed at achieving them depend on each other. Implementation efforts that overlook these systemic interdependencies may, in fact, be hardly fit for purpose (Collste et al., 2017). The transformative potential of the 2030 Agenda lies, in fact, in the synergies to be sought between the SDGs (Timko et al., 2018). However, ignoring potential tradeoffs could have unintended consequences that could be potentially negative (Nilsson et al., 2016). Performance and results data provide essential information for monitoring the implementation of the SDGs. However, these data should be complemented by other qualitative assessments of political efforts and other actions promoted in support of these goals (Sachs et al., 2020). Science, Technology and Innovation (STI, as indicated in UN contexts) have been recognized as one of the main drivers of increased productivity and a key long-term lever for economic growth, prosperity and environmental sustainability (Giovannini et al., 2015). In the context of the new Agenda and for the achievement of the SDGs, STI plays an even more central role. First of all, STI have a highly transversal character to achieve the different objectives and sectoral targets. Promoting innovation is part of SDG 9, relating to resilient infrastructures and inclusive and sustainable industrialization. In particular, Target 9.5 elevates the role of research and innovation policy far beyond the STIs, intended as one of the means of implementation. Technology and, consequently, also emerging technologies such as Artificial Intelligence, Big Data, Internet of Things, Blockchain and 5G communications can be accelerators of innovation capable of creating new products, processes and industries and upset the status quo of Information Communication Technology (ICT). However, in the 2030 Agenda and in the SDGs no explicit reference is made to New Technologies and emerging technologies, despite the key role recognized by STIs in achieving the SDGs. The 2030 Agenda affirms, in fact, that ICT, and related technologies, can contribute to substantially increase progress and bridge the digital divide between communities (Wu et al., 2018). Methododolgy To provide an answer to RQ1, this Thesis conducted a bibliometric analysis (chapter 2), in order to assess the productivity of global research in this field, examine the trends and international growth of research on this topic, as well as identify the main research interests. A bibliometric analysis was chosen because, in many research fields, this method is used for the quantitative evaluation of research on academic production (Callon et al., 1991). Furthermore, bibliometric analysis has gained immense popularity in management in recent years (Khan et al., 2021) even if its use in this field is still relatively recent (Donthu et al., 2021). This popularity is attributable to the availability of scientific databases such as Scopus and Web of Science and the interdisciplinary use of bibliometric methodology from information science to management research (Donthu et al., 2021). In this Thesis, the approach of Rowley & Slack (2004) was adopted to carry out a review of the literature. This procedure helps to identify the research topic and future research directions. It takes the form of a five-step process. Both Scopus and Web of Science (WoS), the two most popular bibliographic databases, were initially explored. Due to the improved coverage offered, Scopus was chosen for data collection. The initial search query included “Sustainable Development Goals” and “Blockchain”, “Artificial Intelligence”, “Internet of Things”. The acronyms with the Boolean “OR” operators were also used to obtain the universal set of documents. The initial search resulted in 397 documents. In this research, the thematic area was limited to “Business, Management and Accounting” and “Social Science”, as a result of which 155 documents remained in the output. Furthermore, the search was limited to published articles, articles in press, reviews, in terms of inclusion criteria since they are considered as “certified knowledge” (Ramos-Rodrígue & Ruíz-Navarro, 2004); this resulted in 113 documents. Therefore, only papers in journals were considered and documents such as conference proceedings, theses and book chapters were excluded. Finally, 109 articles remained in the search output after excluding all non-English articles and duplicates. Since the final version of this research is from the beginning of 2022, the dataset was built including the articles up to December 2021. The citations information, bibliographic information, abstracts, keywords and references of these 106 articles were downloaded in a comma separated file (.csv) from Scopus. In this Thesis, the R programming language and the Biblioshiny and VOSviewer software were used to analyze the collected data. VOSviewer was used to graphically display bibliographic data, to identify the top ten most influential authors, journals, countries and articles. This same tool was used to analyze the relationships in the network, through citation analysis, co-citation analysis, co-authorship analysis, bibliographic coupling and co-occurrence analysis. Biblioshiny was used to perform keywords analysis, three-field plot and further analyzes, described in chapter 2. First, the thematic map, tree map, word cloud, and trend topic matrix were obtained using keywords analysis. The three-field plots was created to visualize the interaction between countries, keywords, and journals. Finally, further analyzes provided: annual scientific production graph, country scientific production map, author impact, source impact, and most local cited sources. Results From the analyzes carried out (performance analysis and science mapping) to respond to RQ1 it emerged that: • Research on these topics has gained momentum since 2019, recording an annual growth rate of 131.05%. • The most influential paper is Hughes, L. (2019) with 206 citations. • Out of 423 authors, 237 have at least one publication and 2 citations. • Out of 54 journals, only 9 have at least 2 published articles and at least 2 citations. • As also demonstrated by source clustering, carried out through Bradford’s Law, the core sources are Sustainability and Journal of Cleaner Production. • The country analysis shows that Spain is the country with the highest number of publications (67), followed by UK (41), India (38) and Australia (31) and that the highest number of collaborations (4) is registered between UK and USA. The Three-Field Plot also shows that Spain has the largest number of publications in the analyzed domain and that the publications are mainly focused on “Sustainable development goals”, “Artificial intelligence”, and “Internet of Things”. • As regards the keywords, “sustainable development” is the most used keyword (18%), followed by “artificial intelligence” (16%) and by “sustainable development goal” (14%). Furthermore, the 10 main keywordsplus have an increasing trend in this domain, in the period 2018-2021. • In 2021, the three main trending topics were “artificial intelligence”, “sustainable development goal” and “sustainability”. In 2020, however, the three main topics were the following: “sustainable development”, “governance” and “environmental sector”. • The citation analysis showed that out of 106 documents, 65 have at least 3 citations. In particular, three relevant studies emerged in this domain of analysis (Hughes et al., 2019; Bonilla et al., 2018; Papa et al., 2020). • The co-citation analysis was carried out using the “full counting” method. In order to have a significant co-citation, a threshold of at least 10 citations was selected, for a total of 48 cited sources. The co-citation analysis of the cited sources led to the formation of 5 clusters. • The co-citation analysis was also conducted at author level with VOSviewer, using the “full counting” method. 67 authors with at least 10 citations were included. This second co-citation analysis led to the formation of 5 clusters. • The co-authorship analysis (co-authors with at least one item and cited at least 30 times in the analyzed period) highlighted 43 authors, grouped in 10 clusters of different colors. Only 11 authors were co-authors of two items. • The co-authorship network based on the country of affiliation (at least 1 publication in the analyzed period and at least 10 citations) led to 31 countries that exceeded the threshold and that were divided into 7 clusters. The UK has the highest link strength. • Out of 106 publications, only 85 have interconnections. They were grouped into 12 thematic clusters on the basis of shared references (bibliographic coupling). • In order to identify the thematic flow, the co-occurrence analysis of the author’s keywords was carried out to better understand the search trends. Initially, a total of 302 keywords were extracted from the list of 106 documents. The keywords were then limited to at least two occurrences. The analysis produced a total of 48 keywords, grouped into 8 clusters of different colors. 263 links and a total link strength of 516 are identified. The network shows, as expected, that the most used keyword (53 occurrence) is “Sustainable Development Goals”. In terms of the new technology analyzed, “Artificial Intelligence” appears to be the one with the highest number of occurrences (38), followed by “Blockchain” (20) and “Internet of Things” (19). From the analyzes carried out to answer the RQ2, it is possible to draw the following considerations. Regarding the analyzes carried out on blockchain solutions, it emerged that they could be used as a support for the achievement of the SDGs and, in particular, to create and store verifiable digital identities for refugees, allow traceable and economic money transfers or as support in the energy transition. In this Thesis, relevant case studies were analyzed, such as the “Building Blocks - Blockchain for Zero Hunger” project which demonstrates the efficiency of the blockchain in the management of a humanitarian project (SDG 2). One of the salient points of this project, in addition to the benefits for the recipients, is the scalability, that is, the potential replicability of the project in other regions, allowing millions of people to benefit from it and guaranteeing, at the same time, to maximize the financial management of monetary resources, often scarce and difficult to obtain, given that most of these resources come from donations. The second case study analyzed has allowed us to understand how UN Women is exploring solutions based on blockchain technology to overcome the challenges that women and girls face in humanitarian contexts and to increase their degree of access to socio-economic opportunities (SDG 5). The third case study analyzed is an example of a blockchain solution to support the trade of climate assets, registered via blockchain, which could lead to an emissions trading scheme, which can also be replicated in other countries. As regards the analyzes carried out on IoT-based solutions, it emerged that existing projects based on this technology can contribute to the achievement of the SDGs. In particular, in this Thesis, IoT projects related to various sectors were analyzed, such as: health, water and hygiene; agriculture; education; environment; infrastructure and energy sector. As for the analyzes carried out on AI-based solutions, it emerged that there is a wide range of applications that can act as a turning point for the pursuit of sustainable development goals, involving actors from different countries, cultures and sectors. As emerges from the three case studies presented in this Thesis, AI can generate data for a more targeted action (as in the case of PlantVillage), to reduce waste and losses of production and consumption (as in Smart Water Management), and to create new applications with the potential to transform entire sectors and professions, in a simple and cost-effective way (Clean Water AI). Contributions to existing literature In the context of sustainability and sustainable development, this Thesis focused on the technological component and proposed that the transition path towards inclusive and sustainable economic development, from an economic, social and environmental point of view, must be with high intensity of Science, Technology and Innovation. In fact, STIs are essential for achieving faster progress in these areas because such solutions have the potential to contribute to transformative actions capable of reorienting production, promoting equality and inclusion and having positive impacts. However, STI solutions need to be reconfigured for this to happen. There are, of course, opportunities to adapt and apply traditional technologies, but the applications of these technologies have not been specifically designed and geared towards the SDGs. For these reasons, this Thesis proposes the use of new technologies, in particular Blockchain, IoT and AI, to achieve the SDGs because, as emerged from the case studies analyzed in this Thesis, they are arousing strong interest from the various stakeholders. In addition, they are the subject of various pilot projects by EU Organizations and International Organizations, with the aim of identifying and exploiting their potential to facilitate the achievement of the SDGs. This Thesis also presented the main policy implications and highlighted how the concept of sustainable development represents a general vector for the implementation of public policies through the use of effective financial and legal tools. A greater use of financial and legal instruments will therefore contribute to guaranteeing the implementation of sustainable development policies, increasing the efficiency of socio-economic systems and creating favorable conditions for a deeper integration of the European economic environment into the world community. A particular focus was also dedicated to EU support and interventions to address the socio-health emergency through the Next Generation EU (NGEU) to integrate the 2021-2027 Multiannual Financial Framework and stimulate recovery. Conclusions This Thesis analyzed, through a survey literature review, the concepts of sustainability and sustainable development and outlined, through a historical excursus, the framework in which the 17 SDGs were defined, in order to identify the reasons and circumstances that led to the definition of these objectives. In particular, as emerged in this Thesis, the SDGs, which bring together environmental, social and economic aspects, focus, with particular emphasis, on social issues and, first of all, on the elimination of poverty, which is seen as the greatest global challenge and a prerequisite for sustainable development (Wennersten & Qie, 2018). These SDGs, thanks to their configuration, have the potential to bring society from the dominant model of purely economic prosperity towards holistic and sustainable prosperity (Mair et al., 2018). At present, the SDGs framework therefore represents the fundamental paradigm of the genesis of the international ecological and socio-economic system of countries around the world, in order to aim at the creation of the modern world, which is based on the need to guarantee the international balance, solving socio-economic problems and preserving the environment. This implies the need for systemic thinking that draws on theories, tools and techniques capable of facilitating better interaction and cooperation between the various actors involved. This is necessary because the success of such a transformative agenda depends, however, on its implementation, according to an integrated, holistic and multistakeholder approach (Reynolds et al., 2018). The SDG Indexes and Dashboards, presented in this Thesis, are valuable tools that can provide not only a wake-up call, but also a strong warning for global policymakers. From the analyzes carried out, it was observed that no country is currently able to achieve all the SDGs by 2030. This circumstance is explained by considering that progress towards sustainable production and consumption models is too slow and high-income countries generate significant environmental, economic and safety spillovers that undermine the efforts made by other countries to achieve the SDGs (Walsh et al., 2020). As advocated by the European Union, research and innovation must respond to the needs of society and should be based on co-design, co-development and coprovision of solutions, including through partnerships between government stakeholders, private sector, civil society, research communities and international partners, which the technological facilitation mechanism should bring together (Sabato et al., 2015). Furthermore, with the adoption of the 2030 Agenda, there has been a renewed impetus for a series of existing and new international initiatives relating to sciencepolitics interactions. Indeed, many of the SDGs point to the STI implementation for sustainable development as a tool for international cooperation and diplomacy, in particular, regarding science, technological facilitation and innovation capacity development mechanisms (SDG 17.6 and 17.8), as well as for data analysis and measurement (SDG 17.18 and 17.19). Given the great potential of blockchain technology, it is believed that it can be a valuable tool to address the urgent challenges related to achieving the SDGs. The decision to implement a blockchain approach should, however, be based on an in-depth assessment of various factors, such as: cost-benefit analysis, governance aspects, regulatory framework and interconnection with existing tools. The combination of low-cost IoT and Pay as you go (PAYG) presents itself as a valid scenario to better disseminate IoT to promote the achievement of the SDGs. However, it is necessary to take into account some of the main challenges related to the implementation of this technology in developing countries. These challenges can be of a technical, financial nature or can be related to environmental conditions, social factors or policy implications. Furthermore, AI can also be a powerful enabler of the global effort to promote economic development and, at the same time, to sustainably address the impact of production and consumption on societies, governance systems and environment. Thus, such innovations can help improve the efficiency of industries and sectors, conserve valuable and non-renewable resources, disseminate knowledge and skills, fill global gaps in resources and technology, and create effective multi-sector partnerships (governments, private sector, society and citizenship) which may have an impact on global sustainability. Furthermore, this Thesis analyzed the policy implications, also considering the negative impacts that Covid-19, and the consequent global economic crisis, are having on the achievement of most of the SDGs, as well as the new scenario deriving from the EU commitment with the Next Generation EU to promote recovery. Limitations and directions for future research The main purpose of this Thesis was to understand the evolution of the literature relating to New Technologies for achieving the SDGs (RQ1) and to identify the applications and effects of the use of New Technologies (in particular, Blockchain, Internet of Things and Artificial Intelligence) for achieving the SDGs (RQ2). This research will benefit both researchers and professionals as it provides both a general understanding of the existing research on the topic analyzed and a practical insight into the main technologies that characterize Digital Transformation and into the main high-tech projects that are being implemented. This Thesis, like other research on the same topic, however, has some limitations. In this Thesis, to answer the RQ1, only the Scopus Database was used for data collection and, therefore, publications indexed in other databases may have been excluded. Future research on the same topic could reduce this bias using other databases. To respond to RQ2, this Thesis analyzed the applications and effects of the use of Blockchain, Internet of Things and Artificial Intelligence to achieve the SDGs in a qualitative way, through the analysis of some case studies considered more illustrative. Future research on the same topic could identify further illustrative case studies. Since this research topic is relatively new, similar studies could be conducted, in the future, in order to understand the evolution of the analyzed topic. In fact, further studies and future research may be conducted to understand which are the most promising applications in the various areas involved and to what extent these applications can support the objectives set by the 2030 Agenda. Despite these limitations, this Thesis offers a holistic approach to this topic and provides several ideas for future research in order to deepen this topic.File | Dimensione | Formato | |
---|---|---|---|
Pisani_Roberta_Tesi.pdf
accesso aperto
Dimensione
10.07 MB
Formato
Adobe PDF
|
10.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/184761
URN:NBN:IT:UNISTRADA-184761