The evolution of the Internet of Things (IoT) into the Internet of Everything (IoE) reflects the evolution of connected devices and computing technologies, encompassing not only things, but also environments, people, processes, and data. It enables large-scale data collection and analytics, with the potential to transform the interactions between many kinds of human activities and the physical world. Although this transition improves operational efficiency and data-driven decision-making, its full realization requires overcoming issues concerning network bandwidth, energy consumption, data security, and privacy. Most importantly, in the IoE interoperability and smart information management become essential for supporting flexible autonomous processing and sophisticated, flexible service-oriented architectures for extensive machine-to-machine and human-machine interactions. A key strategy for addressing these challenges is edge computing, which brings computational tasks closer to data sources. This transformation is essential for managing the large volumes and rapid pace of data generated in the IoE, while also mitigating latency and bandwidth issues associated with centralized processing systems. An early example of a smart framework that leverages edge computing is the Semantic Web of Things (SWoT). Here, ontology-based descriptions of devices, objects, and events are dealt with locally by pervasive intelligent agents through automated reasoning, enabling autonomous operations towards specific objectives. The advancement of SWoT towards a Semantic Web of Everything (SWoE) requires deeper embedding of semantic technologies in pervasive computing interactions. This vision requires pervasive knowledge representation and automated reasoning abilities, even on devices with stringent processing, memory, and energy limitations. Local inference mechanisms on devices are essential in the SWoE, considering the high volatility and restricted accessibility of more powerful devices. The deployment of SWoE architectures discloses considerable difficulties from a scientific and technological standpoint. Current Semantic Web reasoners and Knowledge Base Management Systems (KBMS) are primarily tailored for high-performance computing environments such as servers and workstation clusters, making them unsuitable for nano-scale devices. Reasoning engines that might work on smaller devices frequently lack essential inference support, thus limiting their practicality. For this reason, creating SWoE platforms requires a reassessment of evaluation and benchmarking methodologies to consider the unique constraints of this new paradigm. This dissertation presents several innovative contributions to the field of distributed reasoning in SWoE scenarios, focusing on applying knowledge representation and automated inferences to the coordination of networks of smart agents embodied into resource-constrained devices. To this aim, this work covers system architectures and optimization strategies for various essential components frameworks, such as: Cowl, a lightweight and versatile knowledge representation library designed for devices with limited resources, overcoming the restrictions of current KBMS in embedded and IoT contexts; Tiny-ME, an innovative multi-platform reasoner and matchmaking engine tailored for the SWoE, providing efficient reasoning capabilities appropriate for cloud, desktop, mobile, and edge devices; evOWLuator, a cross-platform evaluation framework that is mindful of energy consumption for Semantic Web reasoners, emphasizing power usage estimation and supporting inferences on remote devices; a Cloud-Edge Intelligence (CEI) framework for multi-agent systems and sensor-based application, exploiting serverless computing for data management and machine learning tasks. Great emphasis is placed on the assessment of the developed technologies through extensive experimental campaigns, which provide insights into performance, efficiency, and applicability in SWoE settings. In addition, practical applications are demonstrated through case studies in various contexts. The first scenario demonstrates a framework for adapting Quality of Experience (QoE) in Web multimedia streaming, using the WebAssembly port of Tiny-ME as reasoning engine. The second highlights a privacy-focused local event finder, showing a client-side Web reasoning use case in data retrieval and personalization for Web applications. The third case study explores how Tiny-ME manages semantically annotated resources in peer-to-peer networks, improving negotiation and discovery explanations. Finally, a smart city example shows how Cowl can be integrated in nano-scale sensors to exchange semantically enriched data, enhancing urban mobility. Together, the mentioned experiments and applications underscore the flexibility and wide-ranging usability of the presented methods and technologies, highlighting the extensive potential of the SWoE.
L'evoluzione dell'Internet of Things (IoT) verso l'Internet of Everything (IoE) riflette il progresso dei dispositivi di rete e delle tecnologie di calcolo, comprendendo non solo oggetti, ma anche ambienti, persone, processi e dati. Questo sviluppo consente una raccolta e un'analisi dei dati su larga scala, con il potenziale di trasformare le interazioni tra molteplici attività umane e il mondo fisico. Sebbene questa transizione migliori l'efficienza operativa e il processo decisionale basato sui dati, la sua piena realizzazione richiede il superamento di problematiche relative alla larghezza di banda di rete, al consumo energetico, alla sicurezza dei dati e alla privacy. Soprattutto, nell'IoE, l'interoperabilità e la gestione intelligente delle informazioni diventano fondamentali per supportare processi autonomi flessibili e architetture orientate ai servizi sofisticate, adatte a interazioni estese tra macchine e tra esseri umani e macchine. Una strategia chiave per affrontare queste sfide è l’edge computing, che avvicina le attività computazionali alle sorgenti di dati. Questa trasformazione è essenziale per gestire i grandi volumi di dati e la rapidità con cui questi sono generati nell'IoE, mitigando al contempo i problemi di latenza e larghezza di banda associati ai sistemi di elaborazione centralizzata. Un primo esempio di framework intelligente che sfrutta l’edge computing è il Semantic Web of Things (SWoT). In questo contesto, descrizioni basate sull’utilizzo di ontologie di dispositivi, oggetti ed eventi vengono gestite localmente da agenti intelligenti pervasivi attraverso ragionamenti automatizzati, consentendo operazioni autonome orientate a obiettivi specifici. L'avanzamento del SWoT verso un Semantic Web of Everything (SWoE) richiede un'integrazione più profonda delle tecnologie semantiche nelle interazioni di calcolo pervasivo. Questa visione implica una pervasività di strumenti di rappresentazione della conoscenza e capacità di ragionamento automatizzato, anche su dispositivi con limitate capacità di elaborazione, memoria ed energia. Meccanismi di inferenza locale sui dispositivi sono essenziali nello SWoE, considerando l'elevata volatilità e la limitata accessibilità a dispositivi più performanti. L'implementazione di architetture SWoE presenta difficoltà significative dal punto di vista scientifico e tecnologico. Gli attuali motori di ragionamento per il Semantic Web e i Knowledge Base Management Systems (KBMS) sono principalmente progettati per ambienti di calcolo ad elevate prestazioni, come server e cluster di workstation, rendendoli inadatti a dispositivi su scala nanometrica. I motori di ragionamento che potrebbero funzionare su dispositivi più piccoli spesso mancano di procedure di inferenza essenziali, limitandone l'utilizzo. Per questo motivo, la creazione di piattaforme SWoE richiede una rivalutazione delle metodologie di valutazione e benchmarking per includere i vincoli unici di questo nuovo paradigma. Questa dissertazione presenta diversi contributi innovativi nel campo del ragionamento distribuito in scenari SWoE, concentrandosi sull'applicazione della rappresentazione della conoscenza e del ragionamento automatizzato al coordinamento di reti di agenti intelligenti incorporati in dispositivi dalle risorse limitate. A tal fine, questo lavoro analizza architetture e strategie di ottimizzazione per vari componenti fondamentali, come: Cowl, una libreria per la rappresentazione della conoscenza leggera e versatile progettata per dispositivi dalle risorse limitate, che supera le restrizioni dei KBMS attuali nei contesti embedded e IoT; Tiny-ME, un innovativo motore di ragionamento e matchmaking multi-piattaforma progettato per lo SWoE, che offre capacità di ragionamento efficienti adatte a dispositivi cloud, desktop, mobili ed edge; evOWLuator, un framework multipiattaforma per il benchmarking di motori di ragionamento del Semantic Web, con enfasi sulla stima del consumo energetico e sul supporto inferenziale su dispositivi remoti; un framework di Cloud-Edge Intelligence (CEI) per sistemi multi-agente e applicazioni basate su sensori, che sfrutta il calcolo serverless per la gestione dei dati e i task di machine learning. Grande enfasi è posta sulla valutazione delle tecnologie sviluppate attraverso campagne sperimentali estese, che forniscono approfondimenti su prestazioni, efficienza e applicabilità in contesti SWoE. Inoltre, vengono dimostrate applicazioni pratiche attraverso casi di studio in diversi contesti. Il primo scenario presenta un framework per l'adattamento della Quality of Experience (QoE) nello streaming multimediale Web, utilizzando la versione WebAssembly di Tiny-ME come motore di ragionamento. Il secondo evidenzia un sistema di ricerca di eventi locali incentrato sulla privacy, mostrando un caso d'uso di ragionamento client-side per il recupero e la personalizzazione dei dati in applicazioni Web. Il terzo esempio esplora come Tiny-ME è in grado di gestire risorse annotate semanticamente in reti peer-to-peer, migliorando negoziazioni e l’explanation dei risultati di ricerca. Infine, un esempio di smart city mostra come Cowl può essere integrato in sensori su scala nanometrica per lo scambio di dati arricchiti semanticamente, migliorando la mobilità urbana. Gli esperimenti e le applicazioni menzionati evidenziano la flessibilità e la vasta applicabilità dei metodi e delle tecnologie presentati, sottolineando il potenziale esteso dello SWoE.
Distributed reasoning for the autonomous coordination of smart object networks
Gramegna, Filippo
2025
Abstract
The evolution of the Internet of Things (IoT) into the Internet of Everything (IoE) reflects the evolution of connected devices and computing technologies, encompassing not only things, but also environments, people, processes, and data. It enables large-scale data collection and analytics, with the potential to transform the interactions between many kinds of human activities and the physical world. Although this transition improves operational efficiency and data-driven decision-making, its full realization requires overcoming issues concerning network bandwidth, energy consumption, data security, and privacy. Most importantly, in the IoE interoperability and smart information management become essential for supporting flexible autonomous processing and sophisticated, flexible service-oriented architectures for extensive machine-to-machine and human-machine interactions. A key strategy for addressing these challenges is edge computing, which brings computational tasks closer to data sources. This transformation is essential for managing the large volumes and rapid pace of data generated in the IoE, while also mitigating latency and bandwidth issues associated with centralized processing systems. An early example of a smart framework that leverages edge computing is the Semantic Web of Things (SWoT). Here, ontology-based descriptions of devices, objects, and events are dealt with locally by pervasive intelligent agents through automated reasoning, enabling autonomous operations towards specific objectives. The advancement of SWoT towards a Semantic Web of Everything (SWoE) requires deeper embedding of semantic technologies in pervasive computing interactions. This vision requires pervasive knowledge representation and automated reasoning abilities, even on devices with stringent processing, memory, and energy limitations. Local inference mechanisms on devices are essential in the SWoE, considering the high volatility and restricted accessibility of more powerful devices. The deployment of SWoE architectures discloses considerable difficulties from a scientific and technological standpoint. Current Semantic Web reasoners and Knowledge Base Management Systems (KBMS) are primarily tailored for high-performance computing environments such as servers and workstation clusters, making them unsuitable for nano-scale devices. Reasoning engines that might work on smaller devices frequently lack essential inference support, thus limiting their practicality. For this reason, creating SWoE platforms requires a reassessment of evaluation and benchmarking methodologies to consider the unique constraints of this new paradigm. This dissertation presents several innovative contributions to the field of distributed reasoning in SWoE scenarios, focusing on applying knowledge representation and automated inferences to the coordination of networks of smart agents embodied into resource-constrained devices. To this aim, this work covers system architectures and optimization strategies for various essential components frameworks, such as: Cowl, a lightweight and versatile knowledge representation library designed for devices with limited resources, overcoming the restrictions of current KBMS in embedded and IoT contexts; Tiny-ME, an innovative multi-platform reasoner and matchmaking engine tailored for the SWoE, providing efficient reasoning capabilities appropriate for cloud, desktop, mobile, and edge devices; evOWLuator, a cross-platform evaluation framework that is mindful of energy consumption for Semantic Web reasoners, emphasizing power usage estimation and supporting inferences on remote devices; a Cloud-Edge Intelligence (CEI) framework for multi-agent systems and sensor-based application, exploiting serverless computing for data management and machine learning tasks. Great emphasis is placed on the assessment of the developed technologies through extensive experimental campaigns, which provide insights into performance, efficiency, and applicability in SWoE settings. In addition, practical applications are demonstrated through case studies in various contexts. The first scenario demonstrates a framework for adapting Quality of Experience (QoE) in Web multimedia streaming, using the WebAssembly port of Tiny-ME as reasoning engine. The second highlights a privacy-focused local event finder, showing a client-side Web reasoning use case in data retrieval and personalization for Web applications. The third case study explores how Tiny-ME manages semantically annotated resources in peer-to-peer networks, improving negotiation and discovery explanations. Finally, a smart city example shows how Cowl can be integrated in nano-scale sensors to exchange semantically enriched data, enhancing urban mobility. Together, the mentioned experiments and applications underscore the flexibility and wide-ranging usability of the presented methods and technologies, highlighting the extensive potential of the SWoE.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo-GRAMEGNA Filippo.pdf
accesso aperto
Dimensione
8.84 MB
Formato
Adobe PDF
|
8.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/187981
URN:NBN:IT:POLIBA-187981