The evolution of Cyber-Physical Systems (CPSs) and Distributed Ledger Technologies (DLTs) marks a significant step forward in building secure and intelligent infrastructures across various domains, including manufacturing, smart cities, and the Internet of Things (IoT). As CPS systems increasingly integrate computational capabilities with physical processes, the need for robust, transparent, and decentralized data management becomes essential. DLTs, particularly blockchain, provide a solution by ensuring data integrity and enabling secure peer-to-peer interactions, making it ideal for supporting the trust and information visibility requirements of CPS environments. In this context, this dissertation presents a semantic-based framework for integrating DLTs into CPSs, leveraging the Semantic Web of Things (SWoT) to enhance decision-making, resource management, and automated reasoning within decentralized systems. The proposed architecture addresses key challenges in scalability, security, and interoperability by combining DLTs with semantic technologies to enable resource-constrained devices to perform complex reasoning tasks locally while preserving data integrity and trust across the system. The framework’s primary contributions include: (1) a knowledge representation layer that supports advanced resource discovery and service selection through automated reasoning; (2) a federated learning model that enables secure, decentralized model training across edge and IoT devices, preserving data privacy and optimizing network efficiency; and (3) a semantic-enhanced blockchain mechanism that utilizes smart contracts and semantic matchmaking to dynamically manage and prioritize resources across the continuum. Extensive experimental validation, including a case study on green mobility for electric vehicles, demonstrates the framework’s applicability to real-world CPS scenarios, showcasing improvements in data handling, scalability, and resource utilization.
L'evoluzione dei sistemi cyberfisici (Cyber-Physical System, CPS) e delle Distributed Ledger Technology (DLT) rappresenta un passo significativo nella progettazione di infrastrutture sicure e intelligenti in diversi ambiti, tra cui l'industria manifatturiera, le smart city e l'Internet of Thing (IoT). Con l'integrazione sempre più stretta delle capacità computazionali dei sistemi CPS con i processi fisici, diventa essenziale una gestione dei dati robusta, trasparente e decentralizzata. Le DLT, in particolare la blockchain, offrono una soluzione garantendo l'integrità dei dati e abilitando interazioni sicure peer-to-peer, risultando ideali per soddisfare i requisiti di fiducia e visibilità delle informazioni negli ambienti CPS. In questo contesto, la tesi presenta un framework basato su tecnologie semantiche per integrare le DLT nei sistemi CPS, sfruttando il Semantic Web of Thing (SWoT) per migliorare il processo decisionale, la gestione delle risorse e il ragionamento automatico nei sistemi decentralizzati. L'architettura proposta affronta sfide chiave come scalabilità, sicurezza e interoperabilità, combinando le DLT con tecnologie semantiche per consentire ai dispositivi con risorse limitate di eseguire compiti complessi di ragionamento localmente, mantenendo l'integrità e la fiducia dei dati a livello di sistema. I principali contributi del framework includono: (1) un layer di knowledge representation che supporta il resource discovery avanzato e la selezione dei servizi ottimizzata mediante ragionamento automatico; (2) un modello di apprendimento federato che abilita l'addestramento sicuro e decentralizzato dei modelli tra dispositivi edge e IoT, preservando la privacy dei dati e ottimizzando l'efficienza della rete; e (3) un componente blockchain arricchito semanticamente che utilizza smart contract e matchmaking semantico per gestire e prioritizzare dinamicamente le risorse. Una validazione sperimentale approfondita, inclusa un'applicazione pratica sulla mobilità sostenibile per veicoli elettrici, dimostra l'applicabilità del framework a scenari reali di CPS, evidenziando miglioramenti nella gestione dei dati, nella scalabilità e nell'utilizzo delle risorse.
Semantic-based distributed ledger technology for pervasive cyber-physical systems
Ieva, Saverio
2025
Abstract
The evolution of Cyber-Physical Systems (CPSs) and Distributed Ledger Technologies (DLTs) marks a significant step forward in building secure and intelligent infrastructures across various domains, including manufacturing, smart cities, and the Internet of Things (IoT). As CPS systems increasingly integrate computational capabilities with physical processes, the need for robust, transparent, and decentralized data management becomes essential. DLTs, particularly blockchain, provide a solution by ensuring data integrity and enabling secure peer-to-peer interactions, making it ideal for supporting the trust and information visibility requirements of CPS environments. In this context, this dissertation presents a semantic-based framework for integrating DLTs into CPSs, leveraging the Semantic Web of Things (SWoT) to enhance decision-making, resource management, and automated reasoning within decentralized systems. The proposed architecture addresses key challenges in scalability, security, and interoperability by combining DLTs with semantic technologies to enable resource-constrained devices to perform complex reasoning tasks locally while preserving data integrity and trust across the system. The framework’s primary contributions include: (1) a knowledge representation layer that supports advanced resource discovery and service selection through automated reasoning; (2) a federated learning model that enables secure, decentralized model training across edge and IoT devices, preserving data privacy and optimizing network efficiency; and (3) a semantic-enhanced blockchain mechanism that utilizes smart contracts and semantic matchmaking to dynamically manage and prioritize resources across the continuum. Extensive experimental validation, including a case study on green mobility for electric vehicles, demonstrates the framework’s applicability to real-world CPS scenarios, showcasing improvements in data handling, scalability, and resource utilization.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo-IEVA Saverio.pdf
accesso aperto
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/187989
URN:NBN:IT:POLIBA-187989