The research project dealt with the transformation of polysaccharides derived from biomass into innovative raw materials for a responsible production and use of resources, in line with Goal 12 of the ONU Agenda 2030 and within the new bioeconomy paradigm (Adamowicz, 2017) for a sustainable development. The two polysaccharides under study were starch and cellulose, second and first most abundant biopolymer in the biosphere, respectively. Starch was assumed to originate from production waste of yuca manufacturing (Mirabella et al., 2014) and cellulose from agriculture and forestry waste (Sánchez et al., 2019). Starch was studied at University of Milano Bicocca in the Department of Biotechnologies and Biosciences, with the aim to endow the polymer of photoresponsive moieties. The objective was pursued for on demand crosslinking and cleavage (Kaur et al., 2014) promoted with UV irradiation. Starch was successfully functionalized as cinnamyl ether and cinnamoyl ester. The ether showed the [2+2] cycloaddition as minor process and Z isomerization as major, while the ester showed a clue of photoinduced crosslinking even at very low degree of substitution (DS). The cellulose was studied at the University of Natural Resources and Life Science of Vienna; where the second polysaccharide was converted to phenyl carbamate in order to enhance its well-known ability to separate enantiomers (Okamoto et al., 1986a), and then grafted onto pre-functionalized silica gel by Cu(I) catalysed alkyne-azide click chemistry. Anchoring to silica increases the lifetime of the resulting High Pressure Liquid Chromatography (HPLC) column, even in a range of suitable eluents including THF, chloroform, acetone, which are not normally suitable for the coated cellulose stationary phase (Bezhitashvili et al., 2018).
Il progetto di ricerca si è occupato della trasformazione di polisaccaridi derivati da biomasse in materie prime innovative per una produzione e un uso responsabile delle risorse, in linea con l'obiettivo 12 dell'Agenda 2030 dell'ONU e nell'ambito del nuovo paradigma della bioeconomia (Adamowicz, 2017) per uno sviluppo sostenibile. I due polisaccaridi oggetto di studio sono stati l'amido e la cellulosa, rispettivamente secondo e primo biopolimero più abbondante nella biosfera. Si è ipotizzato che l'amido provenga dagli scarti di produzione della yuca (Mirabella et al., 2014) e la cellulosa dagli scarti agricoli e forestali (Sánchez et al., 2019). L'amido è stato studiato presso l'Università di Milano Bicocca nel Dipartimento di Biotecnologie e Bioscienze, con l'obiettivo di dotare il polimero di società fotoresponsive. L'obiettivo è stato perseguito per la reticolazione e la scissione su richiesta (Kaur et al., 2014) promossa con irraggiamento UV. L'amido è stato funzionalizzato con successo come etere cinnamilico ed estere cinnamico. L'etere ha mostrato la cicloaddizione [2+2] come processo minore e l'isomerizzazione Z come maggiore, mentre l'estere ha mostrato un indizio di reticolazione fotoindotta anche a un grado di sostituzione (DS) molto basso. La cellulosa è stata studiata presso l'Università di Risorse Naturali e Scienze della Vita di Vienna, dove il secondo polisaccaride è stato convertito in fenilcarbammato per migliorare la sua ben nota capacità di separare gli enantiomeri (Okamoto et al., 1986a), e poi innestato su gel di silice pre-funzionalizzato mediante reazione di cicloaddizione catalizzata da Cu(I). L'immobilizzazione alla silice aumenta il tempo di vita della colonna HPLC, anche in un range di solventi quali THF, cloroformio, acetone, che non sono normalmente usati nelle colonne in cui la fase stazionaria è adsorbita.
Polysaccharides derived from biomasses for the development of innovative materials.
PETRONI, SIMONA
2025
Abstract
The research project dealt with the transformation of polysaccharides derived from biomass into innovative raw materials for a responsible production and use of resources, in line with Goal 12 of the ONU Agenda 2030 and within the new bioeconomy paradigm (Adamowicz, 2017) for a sustainable development. The two polysaccharides under study were starch and cellulose, second and first most abundant biopolymer in the biosphere, respectively. Starch was assumed to originate from production waste of yuca manufacturing (Mirabella et al., 2014) and cellulose from agriculture and forestry waste (Sánchez et al., 2019). Starch was studied at University of Milano Bicocca in the Department of Biotechnologies and Biosciences, with the aim to endow the polymer of photoresponsive moieties. The objective was pursued for on demand crosslinking and cleavage (Kaur et al., 2014) promoted with UV irradiation. Starch was successfully functionalized as cinnamyl ether and cinnamoyl ester. The ether showed the [2+2] cycloaddition as minor process and Z isomerization as major, while the ester showed a clue of photoinduced crosslinking even at very low degree of substitution (DS). The cellulose was studied at the University of Natural Resources and Life Science of Vienna; where the second polysaccharide was converted to phenyl carbamate in order to enhance its well-known ability to separate enantiomers (Okamoto et al., 1986a), and then grafted onto pre-functionalized silica gel by Cu(I) catalysed alkyne-azide click chemistry. Anchoring to silica increases the lifetime of the resulting High Pressure Liquid Chromatography (HPLC) column, even in a range of suitable eluents including THF, chloroform, acetone, which are not normally suitable for the coated cellulose stationary phase (Bezhitashvili et al., 2018).File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_884053.pdf
accesso aperto
Dimensione
6.91 MB
Formato
Adobe PDF
|
6.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/189386
URN:NBN:IT:UNIMIB-189386