This work addresses the challenge of computing free energies to gain insights into biological systems by exploring the thermodynamic properties of biologically relevant macromolecules. While atomic-level structures provide valuable insights into biomolecular function, molecular dynamics (MD) simulations offer an opportunity to observe how biomolecules move and respond to atomic-level perturbations. MD simulations predict the movement of every atom based on physical models of interatomic interactions, allowing observation of key biomolecular processes such as conformational changes and ligand binding with femtosecond-scale temporal resolution. These simulations are often combined with structural biology techniques, such as X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, and Förster resonance energy transfer. In recent years, the accessibility and accuracy of MD simulations have increased significantly due to advances in hardware and software. This has opened new avenues for studying complex molecular systems, providing deeper insights into their dynamic behavior and interactions. By integrating MD simulations with experimental data, researchers can better understand molecular function, predict responses to perturbations, and design molecules with tailored properties. Building on these developments, this thesis explores advanced simulation techniques like free energy estimation through well-tempered metadynamics (WT-MTD) and non-equilibrium thermodynamic integration (NE-TI) to study complex molecular systems. The work focuses on three main projects: estimating redox potential in flavodoxins, exploring rotaxanes as molecular machines, and analyzing the Fluc-Ec2 ion channel. The first project involves estimating the redox potential of flavodoxins, enzymes that play a crucial role in electron transfer and energy conversion processes. Using NE-TI, we accurately estimated the redox potential of wild-type flavodoxin from Clostridium Beijerinckii and eight of its mutants, with most values deviating less than 1 kcal/mol from experimental data. This suggests that the NE-TI method is a promising tool for rationally designing flavoproteins with optimized redox properties. The second project investigates the dynamics and stability of rotaxanes, which are molecular machines that generate unidirectional motion through chemical reactions. The study examines how different solvents like DMSO, ACN, and CHCl3 impact the shuttling mechanism of the rotaxane’s ring along its axle. In polar solvents like DMSO and ACN, interactions reduce the energy barrier for ring movement, while low-polarity solvents like CHCl3 lead to slower shuttling due to stronger hydrogen bonding. Using well-tempered metadynamics (WT-MTD) for free energy calculations, the project aims to gain deeper insights into the molecular mechanics of rotaxanes for their potential applications in nanotechnology and molecular-scale devices. The third project focuses on the Fluc-Ec2 ion channel, specialized in fluoride export and critical for microbial resistance to environmental fluorides. The aim is to understand how the protonation of key residues, such as His106 and Glu86, affects the channel’s conformation and fluoride binding. Through unbiased and restrained MD simulations, we examined how different protonation states alter fluoride permeation, hypothesizing that His106 protonation favors a functional open state of the channel. This thesis demonstrates how integrating various MD simulation techniques, including free energy estimation, provides deeper insights into the energetic stability and dynamics of complex molecular systems. This approach offers the potential to optimize proteins and molecular machines for applications in biotechnology and biomolecular device development.
Questo lavoro affronta la sfida di calcolare le energie libere per approfondire i sistemi biologici, esplorando le proprietà termodinamiche di macromolecole rilevanti. Le simulazioni di dinamica molecolare (MD) permettono di osservare i movimenti delle biomolecole e le loro risposte a perturbazioni atomiche, prevedendo il movimento di ogni atomo basandosi su modelli fisici. Ciò consente di studiare processi chiave come cambiamenti conformazionali e legami con ligandi su scala femtosecondi. Queste simulazioni sono spesso integrate con tecniche di biologia strutturale, come cristallografia a raggi X, crio-microscopia elettronica e risonanza magnetica nucleare. Negli ultimi anni, l'accessibilità e l'accuratezza delle simulazioni MD sono aumentate in modo significativo grazie ai progressi dell'hardware e del software. Ciò ha aperto nuove strade per lo studio di sistemi molecolari complessi, fornendo approfondimenti sul loro comportamento dinamico e sulle loro interazioni. Integrando le simulazioni MD con i dati sperimentali, i ricercatori possono comprendere meglio la funzione molecolare, prevedere le risposte alle perturbazioni e progettare molecole con proprietà personalizzate. Sulla base di questi sviluppi, questa tesi esplora tecniche di simulazione avanzate come la stima dell'energia libera attraverso la metadinamica ben temperata (WT-MTD) e l'integrazione termodinamica non di equilibrio (NE-TI) per studiare sistemi molecolari complessi. Il lavoro si concentra su tre progetti principali: la stima del potenziale redox nelle flavodossine, l'esplorazione dei rotaxani come macchine molecolari e l'analisi del canale ionico Fluc-Ec2. Il primo progetto prevede la stima del potenziale redox delle flavodossine, enzimi che svolgono un ruolo cruciale nei processi di trasferimento di elettroni e di conversione energetica. Utilizzando la NE-TI, abbiamo stimato con precisione il potenziale redox della flavodossina wild-type di Clostridium Beijerinckii e di otto suoi mutanti, con la maggior parte dei valori che si discostano meno di 1 kcal/mol dai dati sperimentali. Ciò suggerisce che il metodo NE-TI è uno strumento promettente per la progettazione razionale di flavoproteine con proprietà redox ottimizzate. Il secondo progetto studia la dinamica e la stabilità dei rotaxani, macchine molecolari che generano un movimento unidirezionale attraverso reazioni chimiche. Lo studio esamina l'impatto di diversi solventi come DMSO, ACN e CHCl3 sul meccanismo di spostamento dell'anello del rotaxano lungo il suo asse. In solventi polari come il DMSO e l'ACN, le interazioni riducono la barriera energetica per il movimento dell'anello, mentre i solventi a bassa polarità come il CHCl3 determinano un rallentamento del movimento a causa di un legame idrogeno più forte. Utilizzando la metadinamica ben temperata (WT-MTD) per i calcoli dell'energia libera, il progetto mira ad approfondire la meccanica molecolare dei rotaxani per le loro potenziali applicazioni nelle nanotecnologie e nei dispositivi su scala molecolare. Il terzo progetto si concentra sul canale ionico Fluc-Ec2, specializzato nell'esportazione di fluoruro e critico per la resistenza microbica ai fluoruri ambientali. L'obiettivo è capire come la protonazione di residui chiave, come His106 e Glu86, influenzi la conformazione del canale e il legame con il fluoro. Attraverso simulazioni MD unbiased e restrained, abbiamo esaminato come diversi stati di protonazione alterino la permeazione del fluoruro, ipotizzando che la protonazione di His106 favorisca uno stato funzionale aperto del canale. Questa tesi dimostra come l'integrazione di diverse tecniche di simulazione MD, tra cui la stima dell'energia libera, fornisca approfondimenti sulla stabilità energetica e sulla dinamica di sistemi molecolari complessi. Questo approccio offre il potenziale per ottimizzare proteine e macchine molecolari per applicazioni in biotecnologia e nello sviluppo di dispositivi biomolecolari.
Thermodynamic Behavior of Complex Molecular Systems: From Redox Potential Estimation to the Functionality of Ion Channels and Molecular Machines
SILVESTRI, GIUSEPPE
2025
Abstract
This work addresses the challenge of computing free energies to gain insights into biological systems by exploring the thermodynamic properties of biologically relevant macromolecules. While atomic-level structures provide valuable insights into biomolecular function, molecular dynamics (MD) simulations offer an opportunity to observe how biomolecules move and respond to atomic-level perturbations. MD simulations predict the movement of every atom based on physical models of interatomic interactions, allowing observation of key biomolecular processes such as conformational changes and ligand binding with femtosecond-scale temporal resolution. These simulations are often combined with structural biology techniques, such as X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, and Förster resonance energy transfer. In recent years, the accessibility and accuracy of MD simulations have increased significantly due to advances in hardware and software. This has opened new avenues for studying complex molecular systems, providing deeper insights into their dynamic behavior and interactions. By integrating MD simulations with experimental data, researchers can better understand molecular function, predict responses to perturbations, and design molecules with tailored properties. Building on these developments, this thesis explores advanced simulation techniques like free energy estimation through well-tempered metadynamics (WT-MTD) and non-equilibrium thermodynamic integration (NE-TI) to study complex molecular systems. The work focuses on three main projects: estimating redox potential in flavodoxins, exploring rotaxanes as molecular machines, and analyzing the Fluc-Ec2 ion channel. The first project involves estimating the redox potential of flavodoxins, enzymes that play a crucial role in electron transfer and energy conversion processes. Using NE-TI, we accurately estimated the redox potential of wild-type flavodoxin from Clostridium Beijerinckii and eight of its mutants, with most values deviating less than 1 kcal/mol from experimental data. This suggests that the NE-TI method is a promising tool for rationally designing flavoproteins with optimized redox properties. The second project investigates the dynamics and stability of rotaxanes, which are molecular machines that generate unidirectional motion through chemical reactions. The study examines how different solvents like DMSO, ACN, and CHCl3 impact the shuttling mechanism of the rotaxane’s ring along its axle. In polar solvents like DMSO and ACN, interactions reduce the energy barrier for ring movement, while low-polarity solvents like CHCl3 lead to slower shuttling due to stronger hydrogen bonding. Using well-tempered metadynamics (WT-MTD) for free energy calculations, the project aims to gain deeper insights into the molecular mechanics of rotaxanes for their potential applications in nanotechnology and molecular-scale devices. The third project focuses on the Fluc-Ec2 ion channel, specialized in fluoride export and critical for microbial resistance to environmental fluorides. The aim is to understand how the protonation of key residues, such as His106 and Glu86, affects the channel’s conformation and fluoride binding. Through unbiased and restrained MD simulations, we examined how different protonation states alter fluoride permeation, hypothesizing that His106 protonation favors a functional open state of the channel. This thesis demonstrates how integrating various MD simulation techniques, including free energy estimation, provides deeper insights into the energetic stability and dynamics of complex molecular systems. This approach offers the potential to optimize proteins and molecular machines for applications in biotechnology and biomolecular device development.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_861791.pdf
accesso aperto
Dimensione
6.87 MB
Formato
Adobe PDF
|
6.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/190603
URN:NBN:IT:UNIMIB-190603