Neurodegenerative and neuroinflammatory diseases, such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), represent a major challenge for modern medicine. Despite significant advances in understanding their pathophysiological mechanisms, these conditions remain incurable, with current treatments offering only limited symptomatic relief. This PhD thesis explores the potentialities of neural stem cell (NSC)-based experimental treatments to tackle these multifactorial and complex disorders. The overall assumption was that optimizing pre-clinical experimental settings would provide a comprehensive platform to evaluate the feasibility, safety, and efficacy of NSC-based treatments. In this work, I pursued three complementary aims. Firstly, I assessed the safety and feasibility of transplanting human neural stem cells (hNSCs) in immunodeficient hosts. Here, I transplanted clinical-grade hNSCs via either intracerebroventricular (ICV) or intra-striatum routes in nude mice. The results confirmed that hNSCs are safe, with no adverse effects such as tumor formation or animal distress. Moreover, hNSCs exhibited a quite consistent differentiation profile and survival rates, regardless of the transplantation site, paving the way for future clinical applications. Next, I explored the potential of directly induced neural stem cells (iNSCs) derived from dermal fibroblasts as a novel tool to counteract demyelination, a hallmark of MS. When transplanted into preclinical models of chemically-induced demyelination, iNSCs demonstrated successful engraftment, survival, and differentiation into mature oligodendrocytes, confirming their ability to produce new myelin. These findings suggest that iNSCs could serve as a promising therapeutic tool for remyelination, offering a less immunogenic alternative to traditional stem cell sources. Lastly, I evaluated a pre-clinical protocol for ICV hNSC transplantation as a novel potential therapeutic approach for ALS. Employing the SOD1G93A mouse model, I found that increasing the cell dosage, alongside a sustained immunosuppression, improved long-term cell viability and showed preliminary neuroprotective effects. However, limitations such as the murine robust immune response to exogenous cells, and the aggressive progression of ALS in this model hindered the overall therapeutic outcomes of this strategy. Despite these promising results, this thesis also acknowledges several experimental limits in developing cell-based treatments for neurodegenerative conditions. In particular, the employed animal models do not fully recapitulate the complexity of human diseases, and the poor survival rate of transplanted human cells, coupled with the extended time needed for efficacy analysis, represent major issues that complicate the translation of these findings into clinical practice. In conclusion, this thesis emphasizes the potential of NSC-based experimental therapies for treating complex neural disorders like MS and ALS. However, to fully harness their therapeutic potential, future studies must refine stem cell delivery methods, optimize pre-clinical models, and address the key translational challenges. Advances in "humanized" models and bioengineering technologies will be crucial for the successful development of stem cell-based treatments for neurodegenerative diseases.
Malattie neurodegenerative e neuroinfiammatorie, come la sclerosi multipla (SM) e la sclerosi laterale amiotrofica (SLA), rappresentano una sfida significativa per la medicina moderna. Nonostante i notevoli progressi nella comprensione dei loro meccanismi fisiopatologici, queste malattie rimangono incurabili, con i trattamenti attualmente disponibili che offrono solo un limitato sollievo dei sintomi. Questa tesi di dottorato esplora le potenzialità dei trattamenti sperimentali basati sulle cellule staminali neurali (NSC) per affrontare queste patologie multifattoriali e complesse. L’ipotesi generale era che l'ottimizzazione delle condizioni sperimentali precliniche potesse fornire una piattaforma completa per valutare la fattibilità, la sicurezza e l'efficacia dei trattamenti basati sulle NSC. In questo lavoro, ho perseguito tre obiettivi complementari. In primo luogo, ho valutato la sicurezza e la fattibilità del trapianto di cellule staminali neurali umane (hNSC) in modelli immunodeficienti. In questo studio, ho trapiantato hNSC di grado clinico tramite vie intracerebroventricolari (ICV) o intra-striatali in topi nudi. I risultati hanno confermato che le hNSC sono sicure, senza effetti avversi come la formazione di tumori o distress negli animali. Inoltre, le hNSC hanno mostrato un profilo di differenziazione e tassi di sopravvivenza piuttosto costanti, indipendentemente dal sito di trapianto, aprendo la strada a future applicazioni cliniche. Successivamente, ho esplorato il potenziale delle cellule staminali neurali indotte (iNSC), derivate da fibroblasti, come nuovo strumento per contrastare la demielinizzazione, una caratteristica distintiva della SM. Quando trapiantate in modelli preclinici di demielinizzazione chimicamente indotta, le iNSC hanno dimostrato un innesto efficace, sopravvivenza e differenziazione in oligodendrociti maturi, confermando la loro capacità di produrre nuova mielina. Questi risultati suggeriscono che le iNSC potrebbero rappresentare uno strumento terapeutico promettente per la rimielinizzazione, offrendo un'alternativa meno immunogenica rispetto alle fonti tradizionali di cellule staminali. Infine, ho valutato un protocollo preclinico per il trapianto ICV di hNSC come nuovo potenziale approccio terapeutico per la SLA. Utilizzando il modello murino SOD1G93A, ho osservato che l'aumento del dosaggio cellulare, insieme a un’immunosoppressione sostenuta, migliorava la vitalità cellulare a lungo termine e mostrava effetti neuroprotettivi preliminari. Tuttavia, limitazioni come la forte risposta immunitaria del topo alle cellule esogene e la progressione aggressiva della SLA in questo modello hanno ostacolato i risultati terapeutici complessivi di questa strategia. Nonostante questi risultati promettenti, questa tesi riconosce anche diversi limiti sperimentali nello sviluppo di trattamenti a base cellulare per patologie neurodegenerative. In particolare, i modelli animali utilizzati non riproducono completamente la complessità delle malattie umane, e la scarsa sopravvivenza delle cellule umane trapiantate, unita al lungo tempo necessario per l'analisi dell'efficacia, rappresentano problematiche rilevanti che complicano il trasferimenti diretto di questi risultati nella pratica clinica. In conclusione, questa tesi enfatizza il potenziale delle terapie sperimentali basate su NSC per il trattamento di disturbi neurologici complessi come la SM e la SLA. Tuttavia, per sfruttare appieno il loro potenziale terapeutico, studi futuri dovranno perfezionare i metodi di somministrazione delle cellule staminali, ottimizzare i modelli preclinici e affrontare le principali sfide traslazionali. I progressi nei modelli “umanizzati” e nelle tecnologie di bioingegneria saranno fondamentali per lo sviluppo di trattamenti basati su cellule staminali per le malattie neurodegenerative.
Stemming neurodegeneration: therapeutic potential of neural stem cell transplantation
LOMBARDI, IVAN
2025
Abstract
Neurodegenerative and neuroinflammatory diseases, such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS), represent a major challenge for modern medicine. Despite significant advances in understanding their pathophysiological mechanisms, these conditions remain incurable, with current treatments offering only limited symptomatic relief. This PhD thesis explores the potentialities of neural stem cell (NSC)-based experimental treatments to tackle these multifactorial and complex disorders. The overall assumption was that optimizing pre-clinical experimental settings would provide a comprehensive platform to evaluate the feasibility, safety, and efficacy of NSC-based treatments. In this work, I pursued three complementary aims. Firstly, I assessed the safety and feasibility of transplanting human neural stem cells (hNSCs) in immunodeficient hosts. Here, I transplanted clinical-grade hNSCs via either intracerebroventricular (ICV) or intra-striatum routes in nude mice. The results confirmed that hNSCs are safe, with no adverse effects such as tumor formation or animal distress. Moreover, hNSCs exhibited a quite consistent differentiation profile and survival rates, regardless of the transplantation site, paving the way for future clinical applications. Next, I explored the potential of directly induced neural stem cells (iNSCs) derived from dermal fibroblasts as a novel tool to counteract demyelination, a hallmark of MS. When transplanted into preclinical models of chemically-induced demyelination, iNSCs demonstrated successful engraftment, survival, and differentiation into mature oligodendrocytes, confirming their ability to produce new myelin. These findings suggest that iNSCs could serve as a promising therapeutic tool for remyelination, offering a less immunogenic alternative to traditional stem cell sources. Lastly, I evaluated a pre-clinical protocol for ICV hNSC transplantation as a novel potential therapeutic approach for ALS. Employing the SOD1G93A mouse model, I found that increasing the cell dosage, alongside a sustained immunosuppression, improved long-term cell viability and showed preliminary neuroprotective effects. However, limitations such as the murine robust immune response to exogenous cells, and the aggressive progression of ALS in this model hindered the overall therapeutic outcomes of this strategy. Despite these promising results, this thesis also acknowledges several experimental limits in developing cell-based treatments for neurodegenerative conditions. In particular, the employed animal models do not fully recapitulate the complexity of human diseases, and the poor survival rate of transplanted human cells, coupled with the extended time needed for efficacy analysis, represent major issues that complicate the translation of these findings into clinical practice. In conclusion, this thesis emphasizes the potential of NSC-based experimental therapies for treating complex neural disorders like MS and ALS. However, to fully harness their therapeutic potential, future studies must refine stem cell delivery methods, optimize pre-clinical models, and address the key translational challenges. Advances in "humanized" models and bioengineering technologies will be crucial for the successful development of stem cell-based treatments for neurodegenerative diseases.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_889885.pdf
embargo fino al 12/02/2028
Dimensione
42.17 MB
Formato
Adobe PDF
|
42.17 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/190766
URN:NBN:IT:UNIMIB-190766