Skin is the largest and one of the most complex organs of the human body, representing the first interface between the inner physiology and the external environment. It is not merely a protective envelope but a dynamic and multifaceted structure that plays a crucial role in various physiological functions, including temperature regulation, D vitamin synthesis, and haptic sensation. Its microstructure, mainly composed of elastin and collagen fibers, confers the tissue its characteristic non-linear anisotropic mechanical response, which guarantee the integrity of the membrane while allowing for the mobility of the body. Understanding the mechanical properties of skin is fundamental for enhancing surgical outcomes, improving wound healing, aiding in the design of prosthetics and wearable devices, and advancing dermatological treatments. This knowledge is crucial for both medical innovation and patient care. In this thesis the complex mechanical behavior of skin is modeled by means of advanced constitutive models which can account for the non-uniform dispersion of the collagen fibers. Experimental tests on human skin samples were conducted to determine the parameters required to inform such models. In particular, microstructural parameters related to the collagen fiber dispersion are obtained from Second Harmonic Generation (SHG) images of the collagen fibers using a novel algorithm capable of measuring the the three-dimensional orientation distribution of the fibers. Based on the experimental mechanical and microstructural data, the constitutive models implemented in the commercial Finite Element (FE) software ABAQUS are used to simulate skin corrective surgeries, specifically focusing on the Z-plasty, the triple Z-plasty, and the rhombic flap transposition. These simulations provide mechanical insights into the expected outcomes of surgical interventions, allowing us to define optimized configurations that minimizes deformations and stresses, thus contributing to improved surgical planning and outcomes. The results achieved, beside confirming the effectiveness of mechanical simulations in biomedical applications, represent a step forward in the pursuit of more effective and tailored approaches to skin corrective surgeries. Moreover, the developed algorithms, as well as the experimental results of human skin, are not limited to the scope of the present thesis, but can be exploited in further biomechanical analyses.
La pelle è il più esteso e uno dei più complessi organi del corpo umano e rappresenta la prima interfaccia tra la fisiologia interna al corpo umano e l’ambiente esterno. Essa non costituisce solamente una semplice barriera protettiva, ma una struttura dinamica e multifunzionale che svolge un ruolo cruciale in varie funzioni fisiologiche, tra cui la regolazione della temperatura, la sintesi della vitamina D e la sensazione tattile. La sua microstruttura, composta principalmente da fibre di elastina e collagene, conferisce al tessuto la sua caratteristica risposta meccanica non lineare e anisotropa, garantendo l’integrità della membrana pur consentendo la mobilità del corpo. La comprensione delle proprietà meccaniche della pelle è fondamentale per migliorare i risultati chirurgici, accelerare la guarigione delle ferite, aiutare nella progettazione di protesi e dispositivi indossabili, e progredire nei trattamenti dermatologici. Nella presente tesi, il complesso comportamento meccanico della pelle è modellato attraverso modelli costitutivi avanzati che possono tenere conto della dispersione non uniforme delle fibre di collagene. Per determinare i parametri necessari a caratterizzare tali modelli sono state condotte prove sperimentali su campioni di pelle umana. In particolare, i parametri microstrutturali legati alla dispersione delle fibre di collagene sono ottenuti dalle immagini SHG, Second Harmonic Generation, delle fibre di collagene utilizzando un nuovo algoritmo capace di misurare la distribuzione dell’orientamento tridimensionale delle fibre. Sulla base dei dati meccanici e microstrutturali sperimentali, i modelli costitutivi implementati nel software commerciale a elementi finiti ABAQUS sono poi stati utilizzati per simulare interventi chirurgici correttivi della pelle. In particolare sono state analizzate la Z-plasty, la tripla Z-plasty e la rhombic flap transposition. Queste simulazioni forniscono utili informazioni meccaniche circa i risultati attesi degli interventi chirurgici, consentendo di definire configurazioni ottimizzate che minimizzano deformazioni e stress, contribuendo così a migliorare la pianificazione e i risultati chirurgici. I risultati ottenuti, oltre a confermare l’efficacia delle simulazioni meccaniche nelle applicazioni biomediche, rappresentano un passo avanti nella ricerca di approcci più efficaci e personalizzati per le chirurgie correttive della pelle. Inoltre, gli algoritmi sviluppati, così come i risultati sperimentali della pelle umana, non sono limitati all’ambito della presente tesi, ma possono essere efficacemente utilizzati in ulteriori analisi biomeccaniche.
Mechanical Behavior of Human Skin: Testing, Modeling and Simulations
Riccardo, Alberini
2024
Abstract
Skin is the largest and one of the most complex organs of the human body, representing the first interface between the inner physiology and the external environment. It is not merely a protective envelope but a dynamic and multifaceted structure that plays a crucial role in various physiological functions, including temperature regulation, D vitamin synthesis, and haptic sensation. Its microstructure, mainly composed of elastin and collagen fibers, confers the tissue its characteristic non-linear anisotropic mechanical response, which guarantee the integrity of the membrane while allowing for the mobility of the body. Understanding the mechanical properties of skin is fundamental for enhancing surgical outcomes, improving wound healing, aiding in the design of prosthetics and wearable devices, and advancing dermatological treatments. This knowledge is crucial for both medical innovation and patient care. In this thesis the complex mechanical behavior of skin is modeled by means of advanced constitutive models which can account for the non-uniform dispersion of the collagen fibers. Experimental tests on human skin samples were conducted to determine the parameters required to inform such models. In particular, microstructural parameters related to the collagen fiber dispersion are obtained from Second Harmonic Generation (SHG) images of the collagen fibers using a novel algorithm capable of measuring the the three-dimensional orientation distribution of the fibers. Based on the experimental mechanical and microstructural data, the constitutive models implemented in the commercial Finite Element (FE) software ABAQUS are used to simulate skin corrective surgeries, specifically focusing on the Z-plasty, the triple Z-plasty, and the rhombic flap transposition. These simulations provide mechanical insights into the expected outcomes of surgical interventions, allowing us to define optimized configurations that minimizes deformations and stresses, thus contributing to improved surgical planning and outcomes. The results achieved, beside confirming the effectiveness of mechanical simulations in biomedical applications, represent a step forward in the pursuit of more effective and tailored approaches to skin corrective surgeries. Moreover, the developed algorithms, as well as the experimental results of human skin, are not limited to the scope of the present thesis, but can be exploited in further biomechanical analyses.| File | Dimensione | Formato | |
|---|---|---|---|
|
thesis.pdf
Open Access dal 02/06/2025
Licenza:
Tutti i diritti riservati
Dimensione
65.7 MB
Formato
Adobe PDF
|
65.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/192862
URN:NBN:IT:UNIPR-192862